#abc368f. F - Dividing Game

F - Dividing Game

Score : 475475 points

问题陈述

你得到了一个由 NN 个正整数组成的序列 A=(A1,A2,,AN)A = (A_1, A_2, \dots ,A_N),其中每个元素至少为 22。安娜和布鲁诺使用这些整数进行游戏。他们轮流进行,安娜先开始,执行以下操作:

  • 自由选择一个整数 i (1iN)i \ (1 \leq i \leq N)。然后,自由选择一个正除数 xx,该除数不是 AiA_i 本身,并将 AiA_i 替换为 xx

无法执行操作的玩家输掉游戏,另一个玩家获胜。假设两位玩家都为了胜利而进行最优策略,确定谁将获胜。

以上为大语言模型 kimi 翻译,仅供参考。

Problem Statement

You are given a sequence of NN positive integers A=(A1,A2,,AN)A = (A_1, A_2, \dots ,A_N), where each element is at least 22. Anna and Bruno play a game using these integers. They take turns, with Anna going first, performing the following operation.

  • Choose an integer i (1iN)i \ (1 \leq i \leq N) freely. Then, freely choose a positive divisor xx of AiA_i that is not AiA_i itself, and replace AiA_i with xx.

The player who cannot perform the operation loses, and the other player wins. Determine who wins assuming both players play optimally for victory.

Constraints

  • 1N1051 \leq N \leq 10^5
  • 2Ai1052 \leq A_i \leq 10^5
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

NN

A1A_1 A2A_2 \cdots ANA_N

Output

Print Anna if Anna wins the game, and Bruno if Bruno wins.

Sample Input 1

3
2 3 4

Sample Output 1

Anna

For example, the game might proceed as follows. Note that this example may not necessarily represent optimal play by both players:

  • Anna changes A3A_3 to 22.
  • Bruno changes A1A_1 to 11.
  • Anna changes A2A_2 to 11.
  • Bruno changes A3A_3 to 11.
  • Anna cannot operate on her turn, so Bruno wins.

Actually, for this sample, Anna always wins if she plays optimally.

Sample Input 2

4
2 3 4 6

Sample Output 2

Bruno