#abc355g. G - Baseball
G - Baseball
Score : points
问题陈述
你得到了一个长度为 的序列 。高桥和青木将使用序列 进行一场游戏。
首先,高桥将从 中选择 个不同的整数 。
接下来,青木将从 中选择一个整数 ,选择的概率与 成正比。也就是说,选择整数 的概率是 。然后,青木的得分将是 。
高桥想要 最小化 青木得分的期望值。当高桥选择 使得这个值最小化时,找出青木得分的期望值,乘以 。保证要打印的值是一个整数。
以上为大语言模型 kimi 翻译,仅供参考。
Problem Statement
You are given a sequence of length . Takahashi and Aoki will play a game using the sequence .
First, Takahashi will choose distinct integers from .
Next, Aoki will choose an integer from with a probability proportional to . That is, the probability that integer is chosen is . Then, Aoki's score will be .
Takahashi wants to minimize the expected value of Aoki's score. Find the expected value of Aoki's score when Takahashi chooses so that this value is minimized, multiplied by . It is guaranteed that the value to be printed is an integer.
Constraints
- All input values are integers.
Input
The input is given from Standard Input in the following format:
Output
Print the answer.
Sample Input 1
5 2
1 1 1 1 1
Sample Output 1
3
The probabilities of Aoki choosing are all equal: .
If Takahashi chooses and , then the expected value of Aoki's score will be $1 \times \frac{1}{5} + 0 \times \frac{1}{5} + 1 \times \frac{1}{5} + 0 \times \frac{1}{5} + 1 \times \frac{1}{5} = \frac{3}{5}$.
If Takahashi chooses and , then the expected value of Aoki's score will be $1 \times \frac{1}{5} + 0 \times \frac{1}{5} + 0 \times \frac{1}{5} + 1 \times \frac{1}{5} + 2 \times \frac{1}{5} = \frac{4}{5}$.
No matter how Takahashi chooses, the expected value of Aoki's score cannot be smaller than . Therefore, the minimum value is , so print this value multiplied by , which is .
Sample Input 2
5 1
0 0 1 0 0
Sample Output 2
0
Sample Input 3
1 1
100
Sample Output 3
0
Sample Input 4
20 7
4262 9522 2426 3823 7364 964 2743 2423 1955 5274 3684 847 363 35 278 3220 203 2904 6304 1928
Sample Output 4
22809