#abc347f. F - Non-overlapping Squares

F - Non-overlapping Squares

Score: 525525 points

问题陈述

有一个 N×NN \times N 的网格,其中第 ii 行从顶部开始,第 jj 列从左侧开始的单元格 (1i,jN)(1 \leq i, j \leq N) 包含整数 Ai,jA_{i,j}

给定一个整数 MM。当选择三个不重叠的 M×MM \times M 网格时,找出所选网格中写入的整数的最大可能和。

问题的形式定义:一个整数的 66-元组 (i1,j1,i2,j2,i3,j3)(i_1, j_1, i_2, j_2, i_3, j_3) 当满足以下三个条件时被称为一个好的 66-元组

  • 1ikNM+1 (k=1,2,3)1 \leq i_k \leq N-M+1 \ (k=1,2,3)
  • 1jkNM+1 (k=1,2,3)1 \leq j_k \leq N-M+1 \ (k=1,2,3)
  • 如果 kl (k,l{1,2,3})k \neq l \ (k,l \in \lbrace1,2,3\rbrace),集合 $\lbrace(i,j) \mid i_k \leq i < i_k+M \wedge j_k \leq j < j_k+M\rbrace$ 和 $\lbrace(i,j) \mid i_l \leq i < i_l+M \wedge j_l \leq j < j_l+M\rbrace$ 不相交。

对于一个好的 66-元组 (i1,j1,i2,j2,i3,j3)(i_1, j_1, i_2, j_2, i_3, j_3),找出 $\displaystyle \sum_{k=1}^{3}\sum_{i=i_k}^{i_k+M-1}\sum_{j=j_k}^{j_k+M-1}A_{i,j}$ 的最大值。可以证明,在这个问题的约束条件下,存在一个好的 66-元组。

以上为大语言模型 kimi 翻译,仅供参考。

Problem Statement

There is an N×NN\times N grid, and the cell at the ii-th row from the top and the jj-th column from the left (1i,jN)(1\leq i,j\leq N) contains the integer Ai,jA _ {i,j}.

You are given an integer MM. When choosing three non-overlapping M×MM\times M grids, find the maximum possible sum of the integers written in the chosen grids.

Formal definition of the problem A 66-tuple of integers (i1,j1,i2,j2,i3,j3)(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3) is called a good 66-tuple when it satisfies the following three conditions:

  • 1ikNM+1 (k=1,2,3)1\leq i _ k\leq N-M+1\ (k=1,2,3)
  • 1jkNM+1 (k=1,2,3)1\leq j _ k\leq N-M+1\ (k=1,2,3)
  • If kl (k,l{1,2,3})k\neq l\ (k,l\in\lbrace1,2,3\rbrace), the sets $\lbrace(i,j)\mid i _ k\leq i\lt i _ k+M\wedge j _ k\leq j\lt j _ k+M\rbrace$ and $\lbrace(i,j)\mid i _ l\leq i\lt i _ l+M\wedge j _ l\leq j\lt j _ l+M\rbrace$ do not intersect.

Find the maximum value of $\displaystyle \sum _ {k=1} ^ 3\sum _ {i=i _ k} ^ {i _ k+M-1}\sum _ {j=j _ k} ^ {j _ k+M-1}A _ {i,j}$ for a good 66-tuple (i1,j1,i2,j2,i3,j3)(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3). It can be shown that a good 66-tuple exists under the constraints of this problem.

Constraints

  • 2N10002\leq N\leq 1000
  • 1MN/21\leq M\leq N/2
  • 0Ai,j1090\leq A _ {i,j}\leq10 ^ 9
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

NN MM

A1,1A _ {1,1} A1,2A _ {1,2} \ldots A1,NA _ {1,N}

A2,1A _ {2,1} A2,2A _ {2,2} \ldots A2,NA _ {2,N}

\vdots  \ \vdots \ddots \vdots

AN,1A _ {N,1} AN,2A _ {N,2} \ldots AN,NA _ {N,N}

Output

Print the answer.

Sample Input 1

7 3
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5

Sample Output 1

154

From the given grid, if we choose three 3×33\times3 grids as shown in the figure below (this corresponds to setting $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)=(1,5,2,1,5,2)$), the sum of the numbers written in the chosen grids will be 154154.

There is no way to make the sum 155155 or greater while satisfying the conditions in the problem statement, so print 154154.

Sample Input 2

7 1
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5

Sample Output 2

27

The following choice is optimal.

Sample Input 3

16 4
74 16 58 32 97 52 43 51 40 58 13 24 65 11 63 29
98 75 40 77 15 50 83 85 35 46 38 37 56 38 63 55
95 42 10 70 53 40 25 10 70 32 33 19 52 79 74 58
33 91 53 11 65 63 78 77 81 46 81 63 11 82 55 62
39 95 92 69 77 89 14 84 53 78 71 81 66 39 96 29
74 26 60 55 89 35 32 64 17 26 74 92 84 33 59 82
23 69 10 95 94 14 58 58 97 95 62 58 72 55 71 43
93 77 27 87 74 72 91 37 53 80 51 71 37 35 97 46
81 88 26 79 78 30 53 68 83 28 59 28 74 55 20 86
93 13 25 19 53 53 17 24 69 14 67 81 10 19 69 90
88 83 62 92 22 31 27 34 67 48 42 32 68 14 96 87
44 69 25 48 68 42 53 82 44 42 96 31 13 56 68 83
63 87 24 75 16 70 63 99 95 10 63 26 56 12 77 49
94 83 69 95 48 41 40 97 45 61 26 38 83 91 44 31
43 69 54 64 20 60 17 15 62 25 58 50 59 63 88 70
72 95 21 28 41 14 77 22 64 78 33 55 67 51 78 40

Sample Output 3

3295

The following choice is optimal.