#abc347f. F - Non-overlapping Squares
F - Non-overlapping Squares
Score: points
问题陈述
有一个 的网格,其中第 行从顶部开始,第 列从左侧开始的单元格 包含整数 。
给定一个整数 。当选择三个不重叠的 网格时,找出所选网格中写入的整数的最大可能和。
问题的形式定义:一个整数的 -元组 当满足以下三个条件时被称为一个好的 -元组:
- 如果 ,集合 $\lbrace(i,j) \mid i_k \leq i < i_k+M \wedge j_k \leq j < j_k+M\rbrace$ 和 $\lbrace(i,j) \mid i_l \leq i < i_l+M \wedge j_l \leq j < j_l+M\rbrace$ 不相交。
对于一个好的 -元组 ,找出 $\displaystyle \sum_{k=1}^{3}\sum_{i=i_k}^{i_k+M-1}\sum_{j=j_k}^{j_k+M-1}A_{i,j}$ 的最大值。可以证明,在这个问题的约束条件下,存在一个好的 -元组。
以上为大语言模型 kimi 翻译,仅供参考。
Problem Statement
There is an grid, and the cell at the -th row from the top and the -th column from the left contains the integer .
You are given an integer . When choosing three non-overlapping grids, find the maximum possible sum of the integers written in the chosen grids.
Formal definition of the problem A -tuple of integers is called a good -tuple when it satisfies the following three conditions:
- If , the sets $\lbrace(i,j)\mid i _ k\leq i\lt i _ k+M\wedge j _ k\leq j\lt j _ k+M\rbrace$ and $\lbrace(i,j)\mid i _ l\leq i\lt i _ l+M\wedge j _ l\leq j\lt j _ l+M\rbrace$ do not intersect.
Find the maximum value of $\displaystyle \sum _ {k=1} ^ 3\sum _ {i=i _ k} ^ {i _ k+M-1}\sum _ {j=j _ k} ^ {j _ k+M-1}A _ {i,j}$ for a good -tuple . It can be shown that a good -tuple exists under the constraints of this problem.
Constraints
- All input values are integers.
Input
The input is given from Standard Input in the following format:
Output
Print the answer.
Sample Input 1
7 3
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 1
154
From the given grid, if we choose three grids as shown in the figure below (this corresponds to setting $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)=(1,5,2,1,5,2)$), the sum of the numbers written in the chosen grids will be .
There is no way to make the sum or greater while satisfying the conditions in the problem statement, so print .
Sample Input 2
7 1
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 2
27
The following choice is optimal.
Sample Input 3
16 4
74 16 58 32 97 52 43 51 40 58 13 24 65 11 63 29
98 75 40 77 15 50 83 85 35 46 38 37 56 38 63 55
95 42 10 70 53 40 25 10 70 32 33 19 52 79 74 58
33 91 53 11 65 63 78 77 81 46 81 63 11 82 55 62
39 95 92 69 77 89 14 84 53 78 71 81 66 39 96 29
74 26 60 55 89 35 32 64 17 26 74 92 84 33 59 82
23 69 10 95 94 14 58 58 97 95 62 58 72 55 71 43
93 77 27 87 74 72 91 37 53 80 51 71 37 35 97 46
81 88 26 79 78 30 53 68 83 28 59 28 74 55 20 86
93 13 25 19 53 53 17 24 69 14 67 81 10 19 69 90
88 83 62 92 22 31 27 34 67 48 42 32 68 14 96 87
44 69 25 48 68 42 53 82 44 42 96 31 13 56 68 83
63 87 24 75 16 70 63 99 95 10 63 26 56 12 77 49
94 83 69 95 48 41 40 97 45 61 26 38 83 91 44 31
43 69 54 64 20 60 17 15 62 25 58 50 59 63 88 70
72 95 21 28 41 14 77 22 64 78 33 55 67 51 78 40
Sample Output 3
3295
The following choice is optimal.