#abc345g. G - Sugoroku 5
G - Sugoroku 5
Score: points
问题陈述
有一个棋盘游戏,共有 个方格:方格 ,方格 ,,方格 。 你有一枚骰子,它掷出的数字是 到 (包括 和 ),每个结果出现的概率相等。 你从方格 开始。重复以下操作,直到到达方格 :
- 掷骰子。设 为当前方格, 为掷出的数字,然后移动到方格 。
设 为在恰好 次操作后到达方格 的概率。计算 模 。
模下的概率是什么?可以证明,所求的概率总是有理数。在这个问题的约束条件下,也可以证明,当使用两个互质整数 和 表示这些值时,存在唯一的整数 满足 且 。找到这个 。
以上为大语言模型 kimi 翻译,仅供参考。
Problem Statement
There is a board game with squares: square , square , , square .
You have a die (dice) that rolls an integer between and , inclusive, with equal probability for each outcome.
You start on square . You repeat the following operation until you reach square :
- Roll the dice. Let be the current square and be the rolled number, then move to square .
Let be the probability of reaching square after exactly operations. Calculate modulo .
What is probability modulo ? It can be proved that the sought probabilities will always be rational numbers. Under the constraints of this problem, it can also be proved that when expressing the values as using two coprime integers and , there is exactly one integer satisfying and . Find this .
Constraints
- and are integers.
Input
The input is given from Standard Input in the following format:
Output
Print lines. The -th line should contain modulo .
Sample Input 1
3 2
Sample Output 1
0
249561089
748683265
For example, you reach square after exactly two operations when the die rolls the following numbers:
- A on the first operation, and a on the second operation.
- A on the first operation, and a on the second operation.
- A on the first operation, and a on the second operation.
Therefore, $P_2 = \left( \frac{1}{2} \times \frac{1}{2} \right) \times 3 = \frac{3}{4}$. We have , so print for .
Sample Input 2
5 5
Sample Output 2
598946612
479157290
463185380
682000542
771443236
Sample Input 3
10 6
Sample Output 3
0
166374059
207967574
610038216
177927813
630578223
902091444
412046453
481340945
404612686
update @ 2024/5/16 17:17:27