#abc343e. E - 7x7x7
E - 7x7x7
Score: points
问题陈述
在一个坐标空间中,我们希望放置三个边长为 的立方体,使得恰好被一个、两个、三个立方体包含的区域的体积分别为 、 和 。
对于三个整数 、、,令 表示由条件 且 且 确定的立方体区域。
确定是否存在九个整数 满足所有以下条件,并在存在时找出一组这样的数。
- $|a_1|, |b_1|, |c_1|, |a_2|, |b_2|, |c_2|, |a_3|, |b_3|, |c_3| \leq 100$
- 设 。
- 恰好被 中的一个立方体包含的区域的体积是 。
- 恰好被 中的两个立方体包含的区域的体积是 。
- 被 全部包含的区域的体积是 。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
In a coordinate space, we want to place three cubes with a side length of so that the volumes of the regions contained in exactly one, two, three cube(s) are , , , respectively.
For three integers , , , let denote the cubic region represented by $(a\leq x\leq a+7) \land (b\leq y\leq b+7) \land (c\leq z\leq c+7)$.
Determine whether there are nine integers that satisfy all of the following conditions, and find one such tuple if it exists.
- $|a_1|, |b_1|, |c_1|, |a_2|, |b_2|, |c_2|, |a_3|, |b_3|, |c_3| \leq 100$
- Let .
- The volume of the region contained in exactly one of is .
- The volume of the region contained in exactly two of is .
- The volume of the region contained in all of is .
Constraints
- All input values are integers.
Input
The input is given from Standard Input in the following format:
Output
If no nine integers satisfy all of the conditions in the problem statement, print No
. Otherwise, print such integers in the following format. If multiple solutions exist, you may print any of them.
Yes
Sample Input 1
840 84 7
Sample Output 1
Yes
0 0 0 0 6 0 6 0 0
Consider the case $(a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3) = (0, 0, 0, 0, 6, 0, 6, 0, 0)$.
The figure represents the positional relationship of , , and , corresponding to the orange, cyan, and green cubes, respectively.
Here,
- All of $|a_1|, |b_1|, |c_1|, |a_2|, |b_2|, |c_2|, |a_3|, |b_3|, |c_3|$ are not greater than .
- The region contained in all of is $(6\leq x\leq 7)\land (6\leq y\leq 7) \land (0\leq z\leq 7)$, with a volume of .
- The region contained in exactly two of is $((0\leq x < 6)\land (6\leq y\leq 7) \land (0\leq z\leq 7))\lor((6\leq x\leq 7)\land (0\leq y < 6) \land (0\leq z\leq 7))$, with a volume of .
- The region contained in exactly one of has a volume of .
Thus, all conditions are satisfied.
$(a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3) = (-10, 0, 0, -10, 0, 6, -10, 6, 1)$ also satisfies all conditions and would be a valid output.
Sample Input 2
343 34 3
Sample Output 2
No
No nine integers satisfy all of the conditions.
update @ 2024/3/10 01:16:45