#abc315g. G - Ai + Bj + Ck = X (1 <= i, j, k <= N)

G - Ai + Bj + Ck = X (1 <= i, j, k <= N)

Score : 550550 points

## 问题描述

给定整数 $N,A,B,C,X$。求满足以下所有条件的整数三元组 $(i,j,k)$ 的数量。

-   $1 \le i,j,k \le N$
-   $Ai + Bj + Ck = X$

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

You are given integers N,A,B,C,XN,A,B,C,X. Find the number of triples of integers (i,j,k)(i,j,k) that satisfy all of the following conditions.

  • 1i,j,kN1 \le i,j,k \le N
  • Ai+Bj+Ck=XAi+Bj+Ck=X

Constraints

  • All input values are integers.
  • 1N1061 \le N \le 10^6
  • 1A,B,C1091 \le A,B,C \le 10^9
  • 1X3×10151 \le X \le 3 \times 10^{15}

Input

The input is given from Standard Input in the following format:

NN AA BB CC XX

Output

Print the answer as an integer.

Sample Input 1

5 3 1 5 15

Sample Output 1

3

The following three triples satisfy the conditions.

  • (1,2,2)(1,2,2) : 3×1+1×2+5×2=153 \times 1 + 1 \times 2 + 5 \times 2 = 15
  • (2,4,1)(2,4,1) : 3×2+1×4+5×1=153 \times 2 + 1 \times 4 + 5 \times 1 = 15
  • (3,1,1)(3,1,1) : 3×3+1×1+5×1=153 \times 3 + 1 \times 1 + 5 \times 1 = 15

Sample Input 2

1 1 1 1 1

Sample Output 2

0

Sample Input 3

100000 31415 92653 58979 1000000000

Sample Output 3

2896

update @ 2024/3/10 09:01:18