#abc314e. E - Roulettes

E - Roulettes

Score : 475475 points

问题描述

设有 NN 个轮盘赌。第 ii 个(1iN1\leq i\leq N)轮盘上有 PiP_i 个整数 Si,1S_{i,1}Si,2S_{i,2}、…、Si,PiS_{i,P_i},玩一次需要支付 CiC_i 日元。当你玩第 ii 个轮盘一次时,会从 11PiP_i(包含两端)之间均匀随机选择一个整数 jj,然后你将获得 Si,jS_{i,j} 分。

各个轮盘上获得的分数独立于以往的结果。

高桥希望至少获得 MM 分。他将采取行动以尽量减少他在至少获得 MM 分之前所支付的金额。每次玩过后,他可以根据先前的结果来选择接下来要玩哪个轮盘。

求高桥在至少获得 MM 分前预期需要支付的金额。

更正式的定义

以下是更为正式的问题陈述。对于高桥可以选择的某个轮盘策略,按照该策略,在至少获得 MM 分之前他所支付的预期金额 EE 定义如下:

  • 对于自然数 XX,令 f(X)f(X) 表示根据该策略,高桥在至少获得 MM 分或总共玩了 XX 次轮盘之前预期支付的金额。令 E=limX+f(X)E=\displaystyle\lim_{X\to+\infty}f(X)

在此问题条件下,无论高桥采用何种策略,可以证明 limX+f(X)\displaystyle\lim_{X\to+\infty}f(X) 都是有限的。找出当他采用使 EE 最小化的策略时,EE 的值。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

There are NN roulette wheels. The ii-th (1iN)(1\leq i\leq N) wheel has PiP _ i integers Si,1,Si,2,,Si,PiS _ {i,1},S _ {i,2},\ldots,S _ {i,P _ i} written on it, and you can play it once by paying CiC _ i yen. When you play the ii-th wheel once, an integer jj between 11 and PiP _ i, inclusive, is chosen uniformly at random, and you earn Si,jS _ {i,j} points.

The points you earn from the wheels are determined independently of past results.

Takahashi wants to earn at least MM points. Takahashi will act to minimize the amount of money he pays before he earns at least MM points. After each play, he can choose which wheel to play next based on the previous results.

Find the expected amount of money Takahashi will pay before he earns at least MM points.

More formal definition

Here is a more formal statement. For a strategy that Takahashi can adopt in choosing which wheel to play, the expected amount of money EE that he pays before he earns at least MM points with that strategy is defined as follows.

  • For a natural number XX, let f(X)f(X) be the expected amount of money Takahashi pays before he earns at least MM points or plays the wheels XX times in total according to that strategy. Let E=limX+f(X)E=\displaystyle\lim _ {X\to+\infty}f(X).

Under the conditions of this problem, it can be proved that limX+f(X)\displaystyle\lim _ {X\to+\infty}f(X) is finite no matter what strategy Takahashi adopts. Find the value of EE when he adopts a strategy that minimizes EE.

Constraints

  • 1N1001\leq N\leq 100
  • 1M1001\leq M\leq 100
  • 1Ci104 (1iN)1\leq C _ i\leq 10 ^ 4\ (1\leq i\leq N)
  • 1Pi100 (1iN)1\leq P _ i\leq 100\ (1\leq i\leq N)
  • $0\leq S _ {i,j}\leq M\ (1\leq i\leq N,1\leq j\leq P _ i)$
  • $\displaystyle\sum _ {j=1}^{P _ i}S _ {i,j}\gt0\ (1\leq i\leq N)$
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

NN MM

C1C _ 1 P1P _ 1 S1,1S _ {1,1} S1,2S _ {1,2} \ldots S1,P1S _ {1,P _ 1}

C2C _ 2 P2P _ 2 S2,1S _ {2,1} S2,2S _ {2,2} \ldots S2,P2S _ {2,P _ 2}

\vdots

CNC _ N PNP _ N SN,1S _ {N,1} SN,2S _ {N,2} \ldots SN,PNS _ {N,P _ N}

Output

Print the expected amount of money Takahashi will pay until he earns at least MM points in a single line. Your output will be considered correct when the relative or absolute error from the true value is at most 10510 ^ {-5}.

Sample Input 1

3 14
100 2 5 9
50 4 1 2 4 8
70 5 2 4 2 8 8

Sample Output 1

215.913355350494384765625

For instance, Takahashi can play the wheels as follows.

  • Pay 5050 yen to play roulette 22 and earn S2,4=8S _ {2,4}=8 points.
  • Pay 5050 yen to play roulette 22 and earn S2,1=1S _ {2,1}=1 point.
  • Pay 100100 yen to play roulette 11 and earn S1,1=5S _ {1,1}=5 points. He has earned a total of 8+1+5148+1+5\geq14 points, so he quits playing.

In this case, he pays 200200 yen before earning 1414 points.

Your output will be considered correct when the relative or absolute error from the true value is at most 10510 ^ {-5}, so outputs such as 215.9112 and 215.9155 would also be considered correct.

Sample Input 2

2 100
1 2 1 2
10 6 0 0 0 0 0 100

Sample Output 2

60

It is optimal to keep spinning roulette 22 until you get 100100 points.

Sample Input 3

20 90
3252 9 0 4 2 7 3 2 3 2 4
2147 1 1
4033 8 0 4 1 7 5 2 5 0
3795 6 6 6 2 3 2 2
3941 7 2 4 4 7 2 0 5
2815 6 2 1 0 5 2 2
3020 2 3 6
3858 9 4 2 7 3 0 4 4 6 5
4533 10 3 6 4 0 6 4 4 2 7 7
4198 8 6 7 0 6 3 6 5 6
3739 8 2 7 1 5 1 4 4 7
2465 4 1 4 0 1
4418 9 7 6 2 4 6 1 5 0 7
5450 12 0 4 4 7 7 4 4 5 4 5 3 7
4196 9 1 6 5 5 7 2 3 6 3
4776 9 2 2 7 3 6 6 1 6 6
2286 3 3 5 6
3152 3 4 1 5
3509 7 0 6 7 0 1 0 3
2913 6 0 1 5 0 5 6

Sample Output 3

45037.072314895291126319493887599716

update @ 2024/3/10 08:58:47