#abc311h. Ex - Many Illumination Plans

Ex - Many Illumination Plans

Score : 675675 points

问题描述

存在一棵有 NN 个顶点的根树 TT,顶点编号为 11NN。根节点为顶点 11,顶点 ii (2iN)(2 \leq i \leq N) 的父节点为 PiP_i

每个顶点都有两个非负整数值,分别称为美感值权重。顶点 ii 的美感值和权重分别为 BiB_iWiW_i

另外,每个顶点被涂成红色或蓝色。顶点 ii 的颜色由一个整数 CiC_i 表示:如果 Ci=0C_i = 0,则顶点 ii 涂成红色;如果 Ci=1C_i = 1,则顶点 ii 涂成蓝色。

对于顶点 vv,令 F(v)F(v) 为以下问题的答案。

UU 是以 vv 为根节点的 TT 的子树。

你可以对 UU 零次或多次执行以下操作序列。(这些操作不会影响未被删除的顶点的美感值、权重或颜色。)

  • 选择除根节点外的一个顶点 cc,设其父节点为 pp
  • 对于每条以 cc 为父节点端点的边,执行以下操作:
    • uu 为该边除 cc 外的另一个端点。删除这条边,并用一条新边连接 ppuu,其中 pp 位于父节点一侧。
  • 删除顶点 cc,以及连接 ppcc 的边。

当满足所有以下条件时,经过一些操作后可得到的作为 UU 的根树被称为良好根树

  • UU 中的每条边上,两端点的颜色都不同。
  • 顶点的总权重不超过 XX

找到良好根树中顶点的最大可能总美感值。

计算出所有的 F(1)F(1), F(2)F(2), \dots, F(N)F(N)

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

There is a rooted tree TT with NN vertices numbered 11 to NN. The root is vertex 11, and the parent of vertex ii (2iN)(2 \leq i \leq N) is PiP_i.
Each vertex has two non-negative integer values called beauty and weight. The beauty and weight of vertex ii are BiB_i and WiW_i, respectively.
Additionally, each vertex is painted red or blue. The color of vertex ii is represented by an integer CiC_i: vertex ii is painted red if Ci=0C_i = 0, and blue if Ci=1C_i = 1.

For vertex vv, let F(v)F(v) be the answer to the following problem.

Let UU be the rooted tree that is the subtree of TT rooted at vv.
You can perform the following sequence of operations on UU zero or more times. (The operations do not affect the beauties, weights, or colors of the vertices that are not being deleted.)

  • Choose a vertex cc other than the root. Let pp be the parent of cc.
  • For each edge whose endpoint on the parent side is cc, do the following:
    • Let uu be the endpoint of the edge other than cc. Delete the edge and connect pp and uu with a new edge, with pp on the parent side.
  • Delete the vertex cc, and the edge connecting pp and cc.

A rooted tree that can be obtained as UU after some operations is called a good rooted tree when all of the following conditions are satisfied.

  • For every edge in UU, the edge's endpoints have different colors.
  • The vertices have a total weight of at most XX.

Find the maximum possible total beauty of the vertices in a good rooted tree.

Find all of F(1),F(2),,F(N)F(1), F(2), \dots, F(N).

Constraints

  • 2N2002 \leq N \leq 200
  • 0X500000 \leq X \leq 50000
  • 1Pii11 \leq P_i \leq i - 1
  • 0Bi10150 \leq B_i \leq 10^{15}
  • 0WiX0 \leq W_i \leq X
  • CiC_i is 00 or 11.
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

NN XX

P2P_2 P3P_3 \dots PNP_N

B1B_1 W1W_1 C1C_1

B2B_2 W2W_2 C2C_2

\vdots

BNB_N WNW_N CNC_N

Output

Print NN lines. The ii-th line should contain F(i)F(i).

Sample Input 1

4 10
1 2 2
2 1 0
4 2 1
6 8 0
7 4 1

Sample Output 1

9
10
6
7

For v=1v=1, choosing c=2c=2 and then c=3c=3 changes UU as shown in the figure, making it a good rooted tree. The total beauty of the vertices in this tree is 2+7=92 + 7 = 9, which is the maximum among all good rooted trees, so F(1)=9F(1) = 9.

image

For v=2v=2, choosing c=4c=4 changes UU as shown in the figure, making it a good rooted tree. The total beauty of the vertices in this tree is 4+6=104 + 6 = 10, which is the maximum among all good rooted trees, so F(2)=10F(2) = 10.

image2

Sample Input 2

5 5
1 2 2 3
1 1 0
10 1 1
100 1 0
1000 1 1
10000 1 1

Sample Output 2

11001
10110
10100
1000
10000

Sample Input 3

20 100
1 2 1 1 1 6 6 5 1 7 9 4 6 4 15 16 8 2 5
887945036308847 12 0
699398807312293 20 1
501806283312516 17 0
559755618233839 19 1
253673279319163 10 1
745815685342299 11 1
251710263962529 15 0
777195295276573 15 0
408579800634972 17 0
521840965162492 17 1
730678137312837 18 1
370007714721362 14 1
474595536466754 17 0
879365432938644 15 0
291785577961862 20 0
835878893889428 14 1
503562238579284 10 0
567569163005307 18 1
368949585722534 15 0
386435396601075 16 0

Sample Output 3

5329161389647368
1570154676347343
501806283312516
2665577865131167
1418696191276572
3952333977838189
982388401275366
1344764458281880
778587515356334
521840965162492
730678137312837
370007714721362
474595536466754
879365432938644
1631226710430574
1339441132468712
503562238579284
567569163005307
368949585722534
386435396601075

update @ 2024/3/10 08:52:36