#abc310g. G - Takahashi And Pass-The-Ball Game

G - Takahashi And Pass-The-Ball Game

Score : 550550 points

问题陈述

设有 NN 名高桥。

ii 名高桥拥有整数 AiA_iBiB_i 个球。

将从包括 1 到 KK 的整数中均匀随机选择一个整数 xx,他们将重复以下操作 xx 次:

  • 对于每一个 ii,第 ii 名高桥将其所有的球都给到第 AiA_i 名高桥。

注意所有 NN 名高桥同时执行此操作。

对于每一名 i=1,2,,Ni=1,2,\ldots,N,求在操作结束后第 ii 名高桥拥有的球数的期望值,结果对 998244353998244353 取模。

如何求解模 998244353998244353 下的期望值? 可以证明所求概率始终是一个有理数。此外,本问题的约束条件保证了如果该概率表示为不可约分数 yx\frac{y}{x},则 xx 不会被 998244353998244353 整除。此时存在一个唯一的满足 0z<9982443530\leq z<998244353 的整数 zz,使得 yxz(mod998244353)y\equiv xz\pmod{998244353},请报告这个 zz 值。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

There are NN Takahashi.

The ii-th Takahashi has an integer AiA_i and BiB_i balls.

An integer xx between 11 and KK, inclusive, will be chosen uniformly at random, and they will repeat the following operation xx times.

  • For every ii, the ii-th Takahashi gives all his balls to the AiA_i-th Takahashi.

Beware that all NN Takahashi simultaneously perform this operation.

For each i=1,2,,Ni=1,2,\ldots,N, find the expected value, modulo 998244353998244353, of the number of balls the ii-th Takahashi has at the end of the operations.

How to find a expected value modulo 998244353998244353 It can be proved that the sought probability is always a rational number. Additionally, the constraints of this problem guarantee that if the sought probability is represented as an irreducible fraction yx\frac{y}{x}, then xx is not divisible by 998244353998244353. Here, there is a unique 0z<9982443530\leq z\lt998244353 such that yxz(mod998244353)y\equiv xz\pmod{998244353}, so report this zz.

Constraints

  • 1N2×1051\leq N\leq 2\times10^5
  • 1K10181\leq K\leq 10^{18}
  • KK is not a multiple of 998244353998244353.
  • 1AiN (1iN)1\leq A _ i\leq N\ (1\leq i\leq N)
  • 0Bi<998244353 (1iN)0\leq B _ i\lt998244353\ (1\leq i\leq N)
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

NN KK

A1A _ 1 A2A _ 2 \cdots ANA _ N

B1B _ 1 B2B _ 2 \cdots BNB _ N

Output

Print the expected value of the number of balls the ii-th Takahashi has at the end of the operations for i=1,2,,Ni=1,2,\ldots,N, separated by spaces, in a single line.

Sample Input 1

5 2
3 1 4 1 5
1 1 2 3 5

Sample Output 1

3 0 499122179 499122178 5

During two operations, the five Takahashi have the following number of balls.

If x=1x=1 is chosen, the five Takahashi have 4,0,1,2,54,0,1,2,5 balls.
If x=2x=2 is chosen, the five Takahashi have 2,0,4,1,52,0,4,1,5 balls.

Thus, the sought expected values are 3,0,52,32,53,0,\dfrac52,\dfrac32,5. Print these values modulo 998244353998244353, that is, 3,0,499122179,499122178,53,0,499122179,499122178,5, separated by spaces.

Sample Input 2

3 1000
1 1 1
1 10 100

Sample Output 2

111 0 0

After one or more operations, the first Takahashi gets all balls.

Sample Input 3

16 1000007
16 12 6 12 1 8 14 14 5 7 6 5 9 6 10 9
719092922 77021920 539975779 254719514 967592487 476893866 368936979 465399362 342544824 540338192 42663741 165480608 616996494 16552706 590788849 221462860

Sample Output 3

817852305 0 0 0 711863206 253280203 896552049 935714838 409506220 592088114 0 413190742 0 363914270 0 14254803

Sample Input 4

24 100000000007
19 10 19 15 1 20 13 15 8 23 22 16 19 22 2 20 12 19 17 20 16 8 23 6
944071276 364842194 5376942 671161415 477159272 339665353 176192797 2729865 676292280 249875565 259803120 103398285 466932147 775082441 720192643 535473742 263795756 898670859 476980306 12045411 620291602 593937486 761132791 746546443

Sample Output 4

918566373 436241503 0 0 0 455245534 0 356196743 0 906000633 0 268983266 21918337 0 733763572 173816039 754920403 0 273067118 205350062 0 566217111 80141532 0

update @ 2024/3/10 08:49:29