#abc308h. Ex - Make Q

Ex - Make Q

Score : 625625 points

问题描述

存在一个简单无向图,具有 NN 个顶点和 MM 条边。初始时所有边都被涂成白色。顶点编号为 11NN,边编号为 11MM。第 ii 条边连接顶点 AiA_i 和顶点 BiB_i,将其涂黑所需的代价为 CiC_i

“构造一个 Q”意味着涂黑四条或更多条边,使得:

  • 所有被涂黑的边中除一条外形成一个简单环;
  • 不构成该环的那条涂黑边连接了环上一个顶点与环外另一个顶点。

请判断是否可以构造一个 Q。如果可以,请找出构造 Q 的最小总代价。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

There is a simple undirected graph with NN vertices and MM edges. The edges are initially painted white. The vertices are numbered 11 through NN, and the edges are numbered 11 through MM. Edge ii connects vertex AiA_i and vertex BiB_i, and the cost required to paint it black is CiC_i.

"Making a Q" means painting four or more edges so that:

  • all but one of the edges painted black form a simple cycle, and
  • the edge painted black not forming the cycle connects a vertex on the cycle and another not on the cycle.

Determine if one can make a Q. If one can, find the minimum total cost required to make a Q.

Constraints

  • 4N3004\leq N \leq 300
  • 4MN(N1)24\leq M \leq \frac{N(N-1)}{2}
  • 1Ai<BiN1 \leq A_i < B_i \leq N
  • (Ai,Bi)(Aj,Bj)(A_i,B_i) \neq (A_j,B_j), if iji \neq j.
  • 1Ci1051 \leq C_i \leq 10^5
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

NN MM

A1A_1 B1B_1 C1C_1

A2A_2 B2B_2 C2C_2

\vdots

AMA_M BMB_M CMC_M

Output

If one can make a Q, print the minimum total cost required to do so; otherwise, print 1-1.

Sample Input 1

5 6
1 2 6
2 3 4
1 3 5
2 4 3
4 5 2
3 5 1

Sample Output 1

15

By painting edges 2,3,4,52,3,4,5, and 66,

  • edges 2,4,52,4,5, and 66 forms a simple cycle, and
  • edge 33 connects vertex 33 (on the cycle) and vertex 11 (not on the cycle),

so one can make a Q with a total cost of 4+5+3+2+1=154+5+3+2+1=15. Making a Q in another way costs 1515 or greater, so the answer is 1515.

Sample Input 2

4 4
1 2 1
2 3 1
3 4 1
1 4 1

Sample Output 2

-1

Sample Input 3

6 15
2 6 48772
2 4 36426
1 6 94325
3 6 3497
2 3 60522
4 5 63982
4 6 4784
1 2 14575
5 6 68417
1 5 7775
3 4 33447
3 5 90629
1 4 47202
1 3 90081
2 5 79445

Sample Output 3

78154

update @ 2024/3/10 08:45:27