#abc308e. E - MEX

E - MEX

Score : 475475 points

问题描述

给定一个长度为 NN 的序列 A=(A1,A2,,AN)A=(A_1,A_2,\dots,A_N),其中包含数字 00, 1122,以及一个长度也为 NN 的字符串 S=S1S2SNS=S_1S_2\dots S_N,其中包含字符 M, E, 和 X

要求计算满足条件 1i<j<kN1 \leq i < j < k \leq NSiSjSk=S_iS_jS_k= MEX 的所有整数元组 (i,j,k)(i,j,k)mex(Ai,Aj,Ak)\text{mex}(A_i,A_j,A_k) 的总和。这里,mex(Ai,Aj,Ak)\text{mex}(A_i,A_j,A_k) 表示既不等于 Ai,AjA_i,A_j 也不等于 AkA_k 的最小非负整数。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

You are given a length-NN sequence A=(A1,A2,,AN)A=(A_1,A_2,\dots,A_N) consisting of 00, 11, and 22, and a length-NN string S=S1S2SNS=S_1S_2\dots S_N consisting of M, E, and X.

Find the sum of mex(Ai,Aj,Ak)\text{mex}(A_i,A_j,A_k) over all tuples of integers (i,j,k)(i,j,k) such that 1i<j<kN1 \leq i < j < k \leq N and SiSjSk=S_iS_jS_k= MEX. Here, mex(Ai,Aj,Ak)\text{mex}(A_i,A_j,A_k) denotes the minimum non-negative integer that equals neither Ai,AjA_i,A_j, nor AkA_k.

Constraints

  • 3N2×1053\leq N \leq 2\times 10^5
  • NN is an integer.
  • Ai{0,1,2}A_i \in \lbrace 0,1,2\rbrace
  • SS is a string of length NN consisting of M, E, and X.

Input

The input is given from Standard Input in the following format:

NN

A1A_1 A2A_2 \dots ANA_N

SS

Output

Print the answer as an integer.

Sample Input 1

4
1 1 0 2
MEEX

Sample Output 1

3

The tuples (i,j,k) (1i<j<kN)(i,j,k)\ (1 \leq i < j < k \leq N) such that SiSjSkS_iS_jS_k = MEX are the following two: (i,j,k)=(1,2,4),(1,3,4)(i,j,k)=(1,2,4),(1,3,4). Since mex(A1,A2,A4)=mex(1,1,2)=0\text{mex}(A_1,A_2,A_4)=\text{mex}(1,1,2)=0 and mex(A1,A3,A4)=mex(1,0,2)=3\text{mex}(A_1,A_3,A_4)=\text{mex}(1,0,2)=3, the answer is 0+3=30+3=3.

Sample Input 2

3
0 0 0
XXX

Sample Output 2

0

Sample Input 3

15
1 1 2 0 0 2 0 2 0 0 0 0 0 2 2
EXMMXXXEMEXEXMM

Sample Output 3

13

update @ 2024/3/10 08:44:37