#abc291g. G - OR Sum
G - OR Sum
Score : points
问题描述
存在长度为 的序列 和 。
Takahashi 可以对序列 进行任意次数(包括零次)的以下操作:
- 对序列 应用左循环移位。换句话说,将 替换为由 定义的新序列,其中 表示 除以 后的余数。
Takahashi 的目标是最大化 ,其中 表示 和 的按位逻辑和(按位 OR)。
求最大可能的 。
什么是按位逻辑和(bitwise OR)?逻辑和(或 OR 操作)是一种针对两个一比特整数( 或 )的操作,定义如下表格所示。按位逻辑和(bitwise OR) 是一种逐比特应用逻辑和的操作。
$x$ | $y$ | $x|y$ |
$0$ | $0$ | $0$ |
$0$ | $1$ | $1$ |
$1$ | $0$ | $1$ |
$1$ | $1$ | $1$ |
逻辑和在至少一个比特 和 为 时产生 。相反,只有当它们两者都为 时才产生 。
示例
0110 | 0101 = 0111```
`以上为通义千问 qwen-max 翻译,仅供参考。`
## Problem Statement
There are length-$N$ sequences $A=(A_0,A_1,\ldots,A_{N-1})$ and $B=(B_0,B_1,\ldots,B_{N-1})$.
Takahashi may perform the following operation on $A$ any number of times (possibly zero):
- apply a left cyclic shift to the sequence $A$. In other words, replace $A$ with $A'$ defined by $A'_i=A_{(i+1)\% N}$, where $x\% N$ denotes the remainder when $x$ is divided by $N$.
Takahashi's objective is to maximize $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$, where $x|y$ denotes the bitwise logical sum (bitwise OR) of $x$ and $y$.
Find the maximum possible $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$.
What is the bitwise logical sum (bitwise OR)? The **logical sum** (or the OR operation) is an operation on two one-bit integers ($0$ or $1$) defined by the table below.
The **bitwise logical sum (bitwise OR)** is an operation of applying the logical sum bitwise.<table><thead><tr align="center"><td align="center">$x$</td><td align="center">$y$</td><td align="center">$x|y$</td></tr></thead><tbody><tr align="center"><td align="center">$0$</td><td align="center">$0$</td><td align="center">$0$</td></tr><tr align="center"><td align="center">$0$</td><td align="center">$1$</td><td align="center">$1$</td></tr><tr align="center"><td align="center">$1$</td><td align="center">$0$</td><td align="center">$1$</td></tr><tr align="center"><td align="center">$1$</td><td align="center">$1$</td><td align="center">$1$</td></tr></tbody></table>
The logical sum yields $1$ if at least one of the bits $x$ and $y$ is $1$. Conversely, it yields $0$ only if both of them are $0$.
##### Example
0110 | 0101 = 0111```
Constraints
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Output
Print the maximum possible .
Sample Input 1
3
0 1 3
0 2 3
Sample Output 1
8
If Takahashi does not perform the operation, remains , and we have $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(0|0)+(1|2)+(3|3)=0+3+3=6$;
if he performs the operation once, making , we have $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(1|0)+(3|2)+(0|3)=1+3+3=7$; and
if he performs the operation twice, making , we have $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(3|0)+(0|2)+(1|3)=3+2+3=8$.
If he performs the operation three or more times, becomes one of the sequences above, so the maximum possible is , which should be printed.
Sample Input 2
5
1 6 1 4 3
0 6 4 0 1
Sample Output 2
23
The value is maximized if he performs the operation three times, making ,
where $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(4|0)+(3|6)+(1|4)+(6|0)+(1|1)=4+7+5+6+1=23$.
update @ 2024/3/10 12:09:58