#abc287f. F - Components

F - Components

Score : 500500 points

问题描述

你得到一棵有 NN 个顶点的树。这些顶点按从 11NN 编号,第 ii 条边连接顶点 aia_i 和顶点 bib_i

对于每个 x=1,2,,Nx=1,2,\ldots,N 解决以下问题:

  • 树的顶点存在 (2N1)(2^N-1) 个非空子集 VV。求满足由 VV 引出的子图恰好有 xx 个连通分量的 VV 的数量,并对结果取模 998244353998244353

什么是引出子图?设 SS 是图 GG 的顶点集合的一个子集;那么由 SS 引出的 GG 的子图是一个顶点集合为 SS,且边集包含所有两端点均在 SS 中的 GG 的边的图。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

You are given a tree with NN vertices. The vertices are numbered 11 through NN, and the ii-th edge connects vertex aia_i and vertex bib_i.

Solve the following problem for each x=1,2,,Nx=1,2,\ldots,N:

  • There are (2N1)(2^N-1) non-empty subsets VV of the tree's vertices. Find the number, modulo 998244353998244353, of such VV that the subgraph induced by VV has exactly xx connected components.

What is an induced subgraph? Let SS be the subset of the vertices of a graph GG; then the subgraph of GG induced by SS is a graph whose vertex set is SS and whose edge set consists of all edges of GG whose both ends are contained in SS.

Constraints

  • 1N50001 \leq N \leq 5000
  • 1ai<biN1 \leq a_i \lt b_i \leq N
  • The given graph is a tree.

Input

The input is given from Standard Input in the following format:

NN

a1a_1 b1b_1

\vdots

aN1a_{N-1} bN1b_{N-1}

Output

Print NN lines.
The ii-th line should contain the answer for x=ix=i.

Sample Input 1

4
1 2
2 3
3 4

Sample Output 1

10
5
0
0

The induced subgraph will have two connected components in the following five cases and one in the others.

  • V={1,2,4}V = \{1,2,4\}
  • V={1,3}V = \{1,3\}
  • V={1,3,4}V = \{1,3,4\}
  • V={1,4}V = \{1,4\}
  • V={2,4}V = \{2,4\}

Sample Input 2

2
1 2

Sample Output 2

3
0

Sample Input 3

10
3 4
3 6
6 9
1 3
2 4
5 6
6 10
1 8
5 7

Sample Output 3

140
281
352
195
52
3
0
0
0
0

update @ 2024/3/10 12:00:34