#abc286g. G - Unique Walk
G - Unique Walk
Score : points
问题描述
你得到一个简单连通的无向图 ,包含 个顶点和 条边。
中的顶点编号为顶点 、顶点 、 和顶点 ,其边编号为边 、边 、 和边 。其中边 连接顶点 和顶点 。
同时,你还得到了图中边的一个子集:。
判断在图 上是否存在一条路径,使得对于所有 ,路径恰好包含边 一次。
该路径可以任意次数(包括零次)包含不属于集合 的边。
什么是路径?在一个无向图 上,路径是一个由 个顶点( 是正整数)和 条边交替组成的序列,即 ,其中边 连接顶点 和顶点 。序列中可以包含相同边或顶点多次。若存在且仅存在一个 满足 ,则称这条路径恰好包含边 一次。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
You are given a simple connected undirected graph with vertices and edges.
The vertices of are numbered vertex , vertex , , and vertex , and its edges are numbered edge , edge , , and edge . Edge connects vertex and vertex .
You are also given a subset of the edges: .
Determine if there is a walk on that contains edge exactly once for all .
The walk may contain an edge not in any number of times (possibly zero).
What is a walk? A walk on an undirected graph is a sequence consisting of vertices ( is a positive integer) and edges occurring alternately, , such that edge connects vertex and vertex . The sequence may contain the same edge or vertex multiple times. A walk is said to contain an edge exactly once if and only if there is exactly one such that .
Constraints
- $N-1 \leq M \leq \min(\frac{N(N-1)}{2},2\times 10^5)$
- If , then .
- is connected.
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Output
Print Yes
if there is a walk satisfying the condition in the Problem Statement; print No
otherwise.
Sample Input 1
6 6
1 3
2 3
3 4
4 5
4 6
5 6
4
1 2 4 5
Sample Output 1
Yes
The walk $(v_1,e_1,v_3,e_3,v_4,e_4,v_5,e_6,v_6,e_5,v_4,e_3,v_3,e_2,v_2)$ satisfies the condition, where denotes vertex and denotes edge .
In other words, the walk travels the vertices on in this order: .
This walk satisfies the condition because it contains edges , , , and exactly once each.
Sample Input 2
6 5
1 2
1 3
1 4
1 5
1 6
3
1 2 3
Sample Output 2
No
There is no walk that contains edges , , and exactly once each, so No
should be printed.
update @ 2024/3/10 11:58:49