#abc285g. G - Tatami
G - Tatami
Score : points
问题描述
我们有一个具有 行(水平)和 列(垂直)的网格。我们用格子 表示从上数第 行、从左数第 列的格子。
我们希望使用 的瓷砖和 的瓷砖覆盖这个网格,使得没有瓷砖重叠且每个位置都被至少一块瓷砖覆盖。(瓷砖可以旋转摆放。)
每个格子上写有数字 1
、2
或者 ?
,其中格子 上所写的字符为 。
- 写有数字
1
的格子必须被一块 的瓷砖覆盖; - 写有数字
2
的格子必须被一块 的瓷砖覆盖; - 写有
?
的格子可以用任意类型的瓷砖进行覆盖。
请确定是否存在这样的瓷砖放置方案。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
We have a grid with horizontal rows and vertical columns. We denote by square the square at the -th row from the top and -th column from the left.
We want to cover this grid with tiles and tiles so that no tiles overlap and everywhere is covered by a tile. (A tile can be rotated.)
Each square has 1
, 2
, or ?
written on it. The character written on square is .
A square with 1
written on it must be covered by a tile, and a square with 2
by a tile. A square with ?
may be covered by any kind of tile.
Determine if there is such a placement of tiles.
Constraints
- and are integers.
- is one of
1
,2
, and?
.
Input
The input is given from Standard Input in the following format:
Output
Print Yes
if there is a placement of tiles to satisfy the conditions in the Problem Statement; print No
otherwise.
Sample Input 1
3 4
2221
?1??
2?21
Sample Output 1
Yes
For example, the following placement satisfies the conditions.
Sample Input 2
3 4
2?21
??1?
2?21
Sample Output 2
No
There is no placement that satisfies the conditions.
Sample Input 3
5 5
11111
11111
11211
11111
11111
Sample Output 3
No
update @ 2024/3/10 11:56:30