#abc284h. Ex - Count Unlabeled Graphs
Ex - Count Unlabeled Graphs
Score : points
问题描述
您需要通过以下步骤生成一个图形。
- 选择一个包含 个未标记顶点的简单无向图。
- 在图中每个顶点处写入不大于 的正整数。这里,不允许存在任何不在任何顶点上书写的不大于 的正整数。
求能够得到的图形数量模 后的结果。(其中, 是一个 质数。)
两个图形被认为是相同的,当且仅当可以为每个图形中的顶点标上标签 ,以满足以下条件:
- 对于所有满足 的 ,两个图形中顶点 上所写的数字相同。
- 对于所有满足 的 和 ,若其中一个图形中 和 之间有边,则另一个图形中 和 之间也必须有边;反之亦然。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
You are to generate a graph by the following procedure.
- Choose a simple undirected graph with unlabeled vertices.
- Write a positive integer at most in each vertex in the graph. Here, there must not be a positive integer at most that is not written in any vertex.
Find the number of possible graphs that can be obtained, modulo . ( is a prime.)
Two graphs are considered the same if and only if one can label the vertices in each graph as to satisfy the following conditions.
- For every such that , the numbers written in vertex in the two graphs are the same.
- For every and such that , there is an edge between and in one of the graphs if and only if there is an edge between and in the other graph.
Constraints
- is a prime.
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Output
Print the answer.
Sample Input 1
3 1 998244353
Sample Output 1
4
The following four graphs satisfy the condition.
Sample Input 2
3 2 998244353
Sample Output 2
12
The following graphs satisfy the condition.
Sample Input 3
5 5 998244353
Sample Output 3
1024
Sample Input 4
30 15 202300013
Sample Output 4
62712469
update @ 2024/3/10 11:54:50