#abc278e. E - Grid Filling
E - Grid Filling
Score : points
问题描述
你有一个从上到下有 行、从左到右有 列的网格。我们用 表示从顶部数第 行、从左边数第 列的方格。对于 ,其上写有一个介于 和 之间的整数 。
已知整数 和 。对于所有满足 且 的有序对 ,求解以下问题:
- 若将满足 以及 条件的方格 涂黑,未被涂黑的方格上所写的整数有多少种不同的数值?
注意:实际上并不会真的将方格涂黑(即,各个问题之间是独立的)。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
You have a grid with rows from top to bottom and columns from left to right. We denote by the square at the -th row from the top and -th column from the left. has an integer between and written on it.
You are given integers and . For all pairs such that and , solve the following problem:
- If you black out the squares such that and , how many distinct integers are written on the squares that are not blacked out?
Note, however, that you do not actually black out the squares (that is, the problems are independent).
Constraints
- $1 \leq A _ {i,j} \leq N\ (1\leq i\leq H,1\leq j\leq W)$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
Output
Print the answers in the following format, where denotes the answer to :
Sample Input 1
3 4 5 2 2
2 2 1 1
3 2 5 3
3 4 4 3
Sample Output 1
4 4 3
5 3 4
The given grid is as follows:
For example, when , four distinct integers , and are written on the squares that are not blacked out, so is the answer.
Sample Input 2
5 6 9 3 4
7 1 5 3 9 5
4 5 4 5 1 2
6 1 6 2 9 7
4 7 1 5 8 8
3 4 3 3 5 3
Sample Output 2
8 8 7
8 9 7
8 9 8
Sample Input 3
9 12 30 4 7
2 2 2 2 2 2 2 2 2 2 2 2
2 2 20 20 2 2 5 9 10 9 9 23
2 29 29 29 29 29 28 28 26 26 26 15
2 29 29 29 29 29 25 25 26 26 26 15
2 29 29 29 29 29 25 25 8 25 15 15
2 18 18 18 18 1 27 27 25 25 16 16
2 19 22 1 1 1 7 3 7 7 7 7
2 19 22 22 6 6 21 21 21 7 7 7
2 19 22 22 22 22 21 21 21 24 24 24
Sample Output 3
21 20 19 20 18 17
20 19 18 19 17 15
21 19 20 19 18 16
21 19 19 18 19 18
20 18 18 18 19 18
18 16 17 18 19 17
update @ 2024/3/10 11:42:46