#abc269d. D - Do use hexagon grid

D - Do use hexagon grid

Score : 400400 points

问题描述

我们有一个无限的六边形网格,如下所示。最初,所有方格都是白色的。

一个六边形单元格用两个整数 iijj 表示为 (i,j)(i,j)
单元格 (i,j)(i,j) 与以下六个单元格相邻:

  • (i1,j1)(i-1,j-1)
  • (i1,j)(i-1,j)
  • (i,j1)(i,j-1)
  • (i,j+1)(i,j+1)
  • (i+1,j)(i+1,j)
  • (i+1,j+1)(i+1,j+1)

高桥将 NN 个单元格 (X1,Y1),(X2,Y2),,(XN,YN)(X_1,Y_1),(X_2,Y_2),\dots,(X_N,Y_N) 涂成了黑色。
找出由黑色单元格形成的连通分量的数量。
当可以通过重复移动到相邻的黑色单元格从一个黑色单元格到达另一个时,两个黑色单元格属于同一个连通分量。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

We have an infinite hexagonal grid shown below. Initially, all squares are white.

A hexagonal cell is represented as (i,j)(i,j) with two integers ii and jj.
Cell (i,j)(i,j) is adjacent to the following six cells:

  • (i1,j1)(i-1,j-1)
  • (i1,j)(i-1,j)
  • (i,j1)(i,j-1)
  • (i,j+1)(i,j+1)
  • (i+1,j)(i+1,j)
  • (i+1,j+1)(i+1,j+1)

Takahashi has painted NN cells (X1,Y1),(X2,Y2),,(XN,YN)(X_1,Y_1),(X_2,Y_2),\dots,(X_N,Y_N) black.
Find the number of connected components formed by the black cells.
Two black cells belong to the same connected component when one can travel between those two black cells by repeatedly moving to an adjacent black cell.

Constraints

  • All values in the input are integers.
  • 1N10001 \le N \le 1000
  • Xi,Yi1000|X_i|,|Y_i| \le 1000
  • The pairs (Xi,Yi)(X_i,Y_i) are distinct.

Input

The input is given from Standard Input in the following format:

NN

X1X_1 Y1Y_1

X2X_2 Y2Y_2

\vdots

XNX_N YNY_N

Output

Print the answer as an integer.

Sample Input 1

6
-1 -1
0 1
0 2
1 0
1 2
2 0

Sample Output 1

3

After Takahashi paints cells black, the grid looks as shown below.

The black squares form the following three connected components:

  • (1,1)(-1,-1)
  • (1,0),(2,0)(1,0),(2,0)
  • (0,1),(0,2),(1,2)(0,1),(0,2),(1,2)

Sample Input 2

4
5 0
4 1
-3 -4
-2 -5

Sample Output 2

4

Sample Input 3

5
2 1
2 -1
1 0
3 1
1 -1

Sample Output 3

1

update @ 2024/3/10 11:21:21