#abc265e. E - Warp

E - Warp

Score : 500500 points

问题描述

Takahashi 在一个二维平面上的原点位置。
他将重复进行 NN 次传送。每次传送时,他会执行以下三种移动之一:

  • 从当前坐标 (x,y)(x,y) 移动到 (x+A,y+B)(x+A,y+B)
  • 从当前坐标 (x,y)(x,y) 移动到 (x+C,y+D)(x+C,y+D)
  • 从当前坐标 (x,y)(x,y) 移动到 (x+E,y+F)(x+E,y+F)

在平面上有 MM 个障碍点 (X1,Y1),,(XM,YM)(X_1,Y_1),\ldots,(X_M,Y_M);他不能传送到这些坐标位置。

请计算经过 NN 次传送后,有多少种可能的路径,并以 998244353998244353 取模的结果给出路径总数。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

Takahashi is at the origin of a two-dimensional plane.
Takahashi will repeat teleporting NN times. In each teleportation, he makes one of the following moves:

  • Move from the current coordinates (x,y)(x,y) to (x+A,y+B)(x+A,y+B)
  • Move from the current coordinates (x,y)(x,y) to (x+C,y+D)(x+C,y+D)
  • Move from the current coordinates (x,y)(x,y) to (x+E,y+F)(x+E,y+F)

There are obstacles on MM points (X1,Y1),,(XM,YM)(X_1,Y_1),\ldots,(X_M,Y_M) on the plane; he cannot teleport to these coordinates.

How many paths are there resulting from the NN teleportations? Find the count modulo 998244353998244353.

Constraints

  • 1N3001 \leq N \leq 300
  • 0M1050 \leq M \leq 10^5
  • 109A,B,C,D,E,F109-10^9 \leq A,B,C,D,E,F \leq 10^9
  • (A,B)(A,B), (C,D)(C,D), and (E,F)(E,F) are distinct.
  • 109Xi,Yi109-10^9 \leq X_i,Y_i \leq 10^9
  • (Xi,Yi)(0,0)(X_i,Y_i)\neq(0,0)
  • (Xi,Yi)(X_i,Y_i) are distinct.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

AA BB CC DD EE FF

X1X_1 Y1Y_1

X2X_2 Y2Y_2

\vdots

XMX_M YMY_M

Output

Print the answer.

Sample Input 1

2 2
1 1 1 2 1 3
1 2
2 2

Sample Output 1

5

The following 55 paths are possible:

  • (0,0)(1,1)(2,3)(0,0)\to(1,1)\to(2,3)
  • (0,0)(1,1)(2,4)(0,0)\to(1,1)\to(2,4)
  • (0,0)(1,3)(2,4)(0,0)\to(1,3)\to(2,4)
  • (0,0)(1,3)(2,5)(0,0)\to(1,3)\to(2,5)
  • (0,0)(1,3)(2,6)(0,0)\to(1,3)\to(2,6)

Sample Input 2

10 3
-1000000000 -1000000000 1000000000 1000000000 -1000000000 1000000000
-1000000000 -1000000000
1000000000 1000000000
-1000000000 1000000000

Sample Output 2

0

Sample Input 3

300 0
0 0 1 0 0 1

Sample Output 3

292172978

update @ 2024/3/10 11:12:40