#abc264h. Ex - Perfect Binary Tree
Ex - Perfect Binary Tree
Score : points
问题描述
我们有一棵拥有 个顶点的有根树,顶点编号为 。
树以顶点 为根,顶点 的父节点为顶点 。
对于每个整数 ,解决以下问题:
从编号在 到 之间的顶点中选择一部分顶点的方式共有 种,其中必须包含顶点 。
其中有多少种方式满足以下条件:由所选顶点集合所诱导出的子图形成了一棵以顶点 为根的完美二叉树(该二叉树拥有正整数 时的 个顶点)?
由于计数结果可能非常大,请输出模 后的结果。
什么是诱导子图?
令 为图 的顶点集合的一个子集。由这个顶点集合 所诱导出的子图 是这样构建的:
-
将 的顶点集合设为 。
-
然后,按以下方式向 添加边:
-
对于所有顶点对 ,如果满足 且 ,若在图 中存在连接顶点 和 的边,则在 中添加一条连接顶点 和 的边。
什么是完美二叉树?完美二叉树是一棵满足以下所有条件的有根树:
- 不是叶子节点的每一个顶点恰好拥有 个子节点。
- 所有叶子节点到根节点的距离相同。
此处,我们也把含有 个顶点和 条边的图视为一棵完美二叉树。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
We have a rooted tree with vertices numbered .
The tree is rooted at Vertex , and the parent of Vertex is Vertex .
For each integer , solve the following problem:
There are ways to choose some of the vertices numbered between and so that Vertex is chosen.
How many of them satisfy the following condition: the subgraph induced by the set of chosen vertices forms a perfect binary tree (with vertices for a positive integer ) rooted at Vertex ?
Since the count may be enormous, print the count modulo .
What is an induced subgraph?
Let be a subset of the vertex set of a graph . The subgraph induced by this vertex set is constructed as follows:
-
Let the vertex set of equal .
-
Then, we add edges to as follows:
-
For all vertex pairs such that , if there is an edge connecting and in , then add an edge connecting and to .
What is a perfect binary tree? A perfect binary tree is a rooted tree that satisfies all of the following conditions:
- Every vertex that is not a leaf has exactly children.
- All leaves have the same distance from the root.
Here, we regard a graph with vertex and edges as a perfect binary tree, too.
Constraints
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print lines. The -th () line should contain the answer as an integer when .
Sample Input 1
10
1 1 2 1 2 5 5 5 1
Sample Output 1
1
1
2
2
4
4
4
5
7
10
The following ways of choosing vertices should be counted:
- when
- when
- when
- when
- when
- when
Sample Input 2
1
Sample Output 2
1
If , the -nd line of the Input is empty.
Sample Input 3
10
1 2 3 4 5 6 7 8 9
Sample Output 3
1
1
1
1
1
1
1
1
1
1
Sample Input 4
13
1 1 1 2 2 2 3 3 3 4 4 4
Sample Output 4
1
1
2
4
4
4
4
4
7
13
13
19
31
update @ 2024/3/10 11:11:11