#abc257h. Ex - Dice Sum 2
Ex - Dice Sum 2
Score : points
问题描述
六面骰子专卖店“Saikoroya”出售 个骰子。第 个骰子的六个面上分别写着 ,其售价为 。
Takahashi打算从中恰好选择 个骰子购买。
目前,“Saikoroya”正在进行促销活动:Takahashi可以将购买的每个骰子掷一次,并获得与骰子上显示的数字之和平方等额的金钱。这里,每个骰子随机且独立地以相等的概率显示六个数字中的一个。
通过合理选择要购买的 个骰子,最大化(他所获得金额)- (他为购买的 个骰子支付的总金额)的期望值。将最大化的期望值对 取模后输出。
模 下期望值的定义
可以证明所求的期望值始终是一个有理数。此外,在本题的约束条件下,所求的期望值可以用不可约分数 表示,其中 不可被 整除。
在这种情况下,我们可以唯一确定一个整数 ,满足 (包括两端点),使得 。请输出这样的 。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
The six-sided dice speciality shop "Saikoroya" sells dice. The -th die (singular of dice) has written on its each side, and has a price of .
Takahashi is going to choose exactly of them and buy them.
Currently, "Saikoroya" is conducting a promotion: Takahashi may roll each of the purchased dice once and claim money whose amount is equal to the square of the sum of the numbers shown by the dice. Here, each die shows one of the six numbers uniformly at random and independently.
Maximize the expected value of (the amount of money he claims) - (the sum of money he pays for the purchased dice) by properly choosing dice to buy. Print the maximized expected value modulo .
Definition of the expected value modulo
We can prove that the sought expected value is always a rational number. Moreover, under the Constraints of this problem, the sought expected value can be expressed by an irreducible fraction where is indivisible by .
In this case, we can uniquely determine the integer between and (inclusive) such that . Print such .
Constraints
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
Sample Input 1
3 2
1 2 3
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
Sample Output 1
20
If he buys the -nd and -rd dice, the expected value of (the amount of money he claims) - (the sum of money he pays for the purchased dice) equals , which is the maximum expected value.
Sample Input 2
10 5
2 5 6 5 2 1 7 9 7 2
5 5 2 4 7 6
2 2 8 7 7 9
8 1 9 6 10 8
8 6 10 3 3 9
1 10 5 8 1 10
7 8 4 8 6 5
1 10 2 5 1 7
7 4 1 4 5 4
5 10 1 5 1 2
5 1 2 3 6 2
Sample Output 2
1014
update @ 2024/3/10 10:56:40