#abc248h. Ex - Beautiful Subsequences
Ex - Beautiful Subsequences
Score : points
问题描述
你给定一个 的排列 ,以及一个整数 。
找出满足以下所有条件的整数对 的数量:
-
-
$\mathrm{max}(P_L,\ldots,P_R) - \mathrm{min}(P_L,\ldots,P_R) \leq R - L + K$
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
You are given a permutation of , and an integer .
Find the number of pairs of integers that satisfy all of the following conditions:
-
-
$\mathrm{max}(P_L,\ldots,P_R) - \mathrm{min}(P_L,\ldots,P_R) \leq R - L + K$
Constraints
- is a permutation of .
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
Sample Input 1
4 1
1 4 2 3
Sample Output 1
9
The following nine pairs satisfy the conditions.
For , we have $\mathrm{max}(A_1,A_2) -\mathrm{min}(A_1,A_2) = 4-1 = 3$ and , not satisfying the condition.
Sample Input 2
2 0
2 1
Sample Output 2
3
Sample Input 3
10 3
3 7 10 1 9 5 4 8 6 2
Sample Output 3
37
update @ 2024/3/10 10:38:16