#abc239h. Ex - Dice Product 2
Ex - Dice Product 2
Score : points
问题描述
Snuke 拥有一枚骰子(dice 的单数形式),该骰子以相等的概率显示出从 到 的整数,同时他还拥有一个整数 。
在满足他的整数小于等于 的条件下,他重复执行以下操作:
- 他投掷骰子。如果骰子显示的数字为 ,则将他的整数乘以 。
求当他停止时,投掷骰子次数的期望值对 取模的结果。
模 下期望值定义
我们可以证明所求期望值始终是一个有理数。此外,在本题的约束条件下,若期望值表示为不可约分数 ,我们还可以证明 。因此,存在一个唯一确定的整数 ,满足 且 。请输出这样的 值。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
Snuke has a die (singular of dice) that shows integers from through with equal probability, and an integer .
He repeats the following operation while his integer is less than or equal to .
- He rolls the die. If the die shows an integer , he multiplies his integer by .
Find the expected value of the number of times he rolls the die until he stops, modulo .
Definition of the expected value modulo We can prove that the desired expected value is always a rational number. Moreover, under the constraints of the problem, when the value is represented as an irreducible fraction , we can also prove that . Thus, an integer such that and is uniquely determined. Answer such .
Constraints
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
Sample Input 1
2 1
Sample Output 1
2
The answer is the expected value of the number of rolls until it shows for the first time. Thus, should be printed.
Sample Input 2
2 39
Sample Output 2
12
The answer is the expected value of the number of rolls until it shows six times. Thus, should be printed.
Sample Input 3
3 2
Sample Output 3
250000004
The answer is . We have , so should be printed.
Note that the answer should be printed modulo .
Sample Input 4
2392 39239
Sample Output 4
984914531
Sample Input 5
1000000000 1000000000
Sample Output 5
776759630
update @ 2024/3/10 10:20:17