#abc235h. Ex - Painting Weighted Graph

Ex - Painting Weighted Graph

Score : 600600 points

问题描述

给定一个含 NN 个顶点和 MM 条边的无向图。第 ii 条边连接顶点 AiA_iBiB_i,且具有权重 CiC_i

初始时,所有顶点都被涂成黑色。你可以最多进行 KK 次以下操作:

  • 操作:选择任意顶点 vv 和任意整数 xx。将从顶点 vv 出发,通过权重不大于 xx 的边可达的所有顶点(包括 vv 本身)涂成红色。

在完成操作后,有多少种可能的红色顶点集合?
请计算结果对 998244353998244353 取模后的数量。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

Given is an undirected graph with NN vertices and MM edges. The ii-th edge connects Vertices AiA_i and BiB_i and has a weight of CiC_i.

Initially, all vertices are painted black. You can do the following operation at most KK times.

  • Operation: choose any vertex vv and any integer xx. Paint red all vertices reachable from the vertex vv by traversing edges whose weights are at most xx, including vv itself.

How many sets can be the set of vertices painted red after the operations?
Find the count modulo 998244353998244353.

Constraints

  • 2N1052 \leq N \leq 10^5
  • 0M1050 \leq M \leq 10^5
  • 1K5001 \leq K \leq 500
  • 1Ai,BiN1 \leq A_i,B_i \leq N
  • 1Ci1091 \leq C_i \leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM KK

A1A_1 B1B_1 C1C_1

\vdots

AMA_M BMB_M CMC_M

Output

Print the answer.

Sample Input 1

3 2 1
1 2 1
2 3 2

Sample Output 1

6

For example, an operation with (v,x)=(2,1)(v,x)=(2,1) paints Vertices 1,21,2 red, and an operation with (v,x)=(1,0)(v,x)=(1,0) paints Vertex 11.

After at most one operation, the set of vertices painted red can be one of the following six: {},{1},{2},{3},{1,2},{1,2,3}\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,2,3\}.

Sample Input 2

5 0 2

Sample Output 2

16

The given graph may not be connected.

Sample Input 3

6 8 2
1 2 1
2 3 2
3 4 3
4 5 1
5 6 2
6 1 3
1 2 10
1 1 100

Sample Output 3

40

The given graph may have multi-edges and self-loops.

update @ 2024/3/10 10:13:01