#abc228g. G - Digits on Grid
G - Digits on Grid
Score : points
问题描述
存在一个由 行和 列构成的网格,其中每个格子包含一个介于 和 之间的数字。对于每一对整数 满足 且 ,在第 行从上到下、第 列从左到右的格子上的数字为 。
使用这个网格,Takahashi 和 Aoki 将一起进行游戏。首先,Takahashi 选择一个格子并在其上放置一枚棋子。然后,两人将重复以下步骤 1 至 4,共进行 次。
- Takahashi 执行以下两种操作之一。
- 将棋子移动到与当前棋子所在格子同一行的另一个格子上。
- 保持不动。
- Takahashi 在黑板上写下棋子所在格子上的数字。
- Aoki 执行以下两种操作之一。
- 将棋子移动到与当前棋子所在格子同一列的另一个格子上。
- 保持不动。
- Aoki 在黑板上写下棋子所在格子上的数字。
之后,黑板上将会有 个数字。设这些数字按照书写顺序分别为 。两个男孩将以这种顺序连接这 位数字,组成一个 位整数 。
找出模 后, 可以成为的不同整数的数量。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
There is a grid with horizontal rows and vertical columns, where each square contains a digit between and . For each pair of integers such that and , the digit written on the square at the -th row from the top and -th column from the left is .
Using this grid, Takahashi and Aoki will play together. First, Takahashi chooses a square and puts a piece on it. Then, the two will repeat the following procedures, 1. through 4., times.
- Takahashi does one of the following two actions.
- Move the piece to another square that shares a row with the square the piece is on.
- Do nothing.
- Takahashi writes on a blackboard the digit written on the square the piece is on.
- Aoki does one of the following two actions.
- Move the piece to another square that shares a column with the square the piece is on.
- Do nothing.
- Aoki writes on the blackboard the digit written on the square the piece is on.
After that, there will be digits written on the blackboard. Let be those digits, in the order they are written. The two boys will concatenate the digits in this order to make a -digit integer .
Find the number, modulo , of different integers that can become.
Constraints
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the number, modulo , of different integers that can become.
Sample Input 1
2 2 1
31
41
Sample Output 1
5
Below is one possible scenario.
- First, Takahashi puts the piece on .
- Takahashi moves the piece from to , and then writes the digit written on .
- Aoki moves the piece from to , and then writes the digit written on .
In this case, we have .
Below is another possible scenario.
- First, Takahashi puts the piece on .
- Takahashi keeps the piece on , and then writes the digit written on .
- Aoki moves the piece from to , and then writes the digit written on .
In this case, we have . Other than these, can also become , , or , but nothing else.
That is, there are five integers that can become, so we print .
Sample Input 2
2 3 4
777
777
Sample Output 2
1
can only become .
Sample Input 3
10 10 300
3181534389
4347471911
4997373645
5984584273
1917179465
3644463294
1234548423
6826453721
5892467783
1211598363
Sample Output 3
685516949
Be sure to find the count modulo .
update @ 2024/3/10 10:00:18