#abc224e. E - Integers on Grid
E - Integers on Grid
Score : points
问题描述
我们有一个包含 行(水平方向)和 列(垂直方向)的网格。令 表示从上到下的第 行以及从左到右的第 列的方格。
每个方格内都有一个整数。对于 ,方格 内含一个正整数 。其余方格内则包含一个 。
初始时,棋子位于方格 上。Takahashi 可以将棋子移动到当前位置以外的任何方格上,任意多次。但是,在移动棋子时,必须同时满足以下两个条件:
- 移动至的新方格上的整数严格大于移动自的原方格上的整数。
- 移动过程中涉及的两个方格必须在同一行或同一列上。
对于 ,请打印当 时,Takahashi 最多可以移动棋子多少次。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
We have a grid with horizontal rows and vertical columns. Let denote the square at the -th row from the top and -th column from the left.
Each square contains an integer. For each , the square contains a positive integer . The other square contains a .
Initially, there is a piece on the square . Takahashi can move the piece to a square other than the square it occupies now, any number of times. However, when moving the piece, both of the following conditions must be satisfied.
- The integer written on the square to which the piece is moved is strictly greater than the integer written on the square from which the piece is moved.
- The squares to and from which the piece is moved are in the same row or the same column.
For each , print the maximum number of times Takahashi can move the piece when .
Constraints
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print lines. For each , the -th line should contain the maximum number of times Takahashi can move the piece when .
Sample Input 1
3 3 7
1 1 4
1 2 7
2 1 3
2 3 5
3 1 2
3 2 5
3 3 5
Sample Output 1
1
0
2
0
3
1
0
The grid contains the following integers.
4 7 0
3 0 5
2 5 5
- When , you can move the piece once by moving it as .
- When , you cannot move the piece at all.
- When , you can move the piece twice by moving it as .
- When , you cannot move the piece at all.
- When , you can move the piece three times by moving it as $(3, 1) \rightarrow (2, 1) \rightarrow (1, 1) \rightarrow (1, 2)$.
- When , you can move the piece once by moving it as .
- When , you cannot move the piece at all.
Sample Input 2
5 7 20
2 7 8
2 6 4
4 1 9
1 5 4
2 2 7
5 5 2
1 7 2
4 6 6
1 4 1
2 1 10
5 6 9
5 3 3
3 7 9
3 6 3
4 3 4
3 3 10
4 2 1
3 5 4
1 2 6
4 7 9
Sample Output 2
2
4
1
5
3
6
6
2
7
0
0
4
1
5
3
0
5
2
4
0
update @ 2024/3/10 09:51:41