#abc221h. H - Count Multiset

H - Count Multiset

Score : 600600 points

## 问题描述

给定正整数 $N$ 和 $M$。

对于每个 $k=1,2,\ldots,N$,求满足以下条件的多集合 $A$ 的个数,并以模 $998244353$ 的结果输出:

- 包含 $k$ 个正整数的多集合 $A$ 满足以下两个条件:
    - 多集合 $A$ 中元素之和为 $N$;
    - 对于任意正整数 $x$,多集合 $A$ 中最多包含 $x$ 出现 $M$ 次。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

Given are positive integers NN and MM.

For each k=1,2,,Nk=1,2,\ldots,N, find the following number and print it modulo 998244353998244353.

  • The number of multisets AA containing kk positive integers that satisfy both of the following conditions:
    • the sum of the elements of AA is NN;
    • for every positive integer xx, AA contains at most MM occurrences of xx.

Constraints

  • 1MN50001 \leq M \leq N \leq 5000
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

Output

Print NN lines; the ii-th line (1iN)(1 \leq i \leq N) should contain the answer for the case k=ik=i.

Sample Input 1

4 2

Sample Output 1

1
2
1
0
  • For k=1k=1, there is one multiset AA that satisfies the conditions: {4}\{4\}.
  • For k=2k=2, there are two multisets AA that satisfy the conditions: {1,3}\{1,3\} and {2,2}\{2,2\}.
  • For k=3k=3, there is one multiset AA that satisfies the conditions: {1,1,2}\{1,1,2\}.
  • For k=4k=4, there is no multiset AA that satisfies the conditions.

Sample Input 2

7 7

Sample Output 2

1
3
4
3
2
1
1

update @ 2024/3/10 09:46:06