#abc221e. E - LEQ
E - LEQ
Score : points
问题描述
已知一个包含 个整数的序列:。
找出满足以下条件的(不一定连续的)子序列 的数量,其中子序列长度至少为 :
- 。
由于计数可能非常庞大,计算结果请模 后输出。
这里需要注意的是,即使两个子序列在顺序上相同,但如果它们源自不同的索引集合,则被视为不同的子序列。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
Given is a sequence of integers: .
Find the number of (not necessarily contiguous) subsequences of length at least that satisfy the following condition:
- .
Since the count can be enormous, print it modulo .
Here, two subsequences are distinguished when they originate from different sets of indices, even if they are the same as sequences.
Constraints
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the number of (not necessarily contiguous) subsequences of length at least that satisfy the condition in Problem Statement.
Sample Input 1
3
1 2 1
Sample Output 1
3
has four (not necessarily contiguous) subsequences of length at least : , , , .
Three of them, , , , satisfy the condition in Problem Statement.
Sample Input 2
3
1 2 2
Sample Output 2
4
Note that two subsequences are distinguished when they originate from different sets of indices, even if they are the same as sequences.
In this Sample, there are four subsequences, , , , , that satisfy the condition.
Sample Input 3
3
3 2 1
Sample Output 3
0
There may be no subsequence that satisfies the condition.
Sample Input 4
10
198495780 28463047 859606611 212983738 946249513 789612890 782044670 700201033 367981604 302538501
Sample Output 4
830
update @ 2024/3/10 09:45:19