#abc219f. F - Cleaning Robot
F - Cleaning Robot
Score : points
问题描述
在一个无限二维网格中,有一个清洁机器人位于点 处。
该机器人将获得一个由四种字符 L
、R
、U
、D
组成的字符串表示的程序。
它会从左到右读取程序中的字符,并对每个读取的字符执行以下操作。
- 设 是机器人当前所在的方格坐标。
- 根据读取到的字符做出如下移动:
- 如果读取到
L
:移动到 。 - 如果读取到
R
:移动到 。 - 如果读取到
U
:移动到 。 - 如果读取到
D
:移动到 。
- 如果读取到
给定一个由 L
、R
、U
、D
组成的字符串 ,机器人将执行的程序是将 连接 次后的结果。
机器人至少访问过一次的所有方格(包括初始位置 )都将被清理。
请输出在程序执行结束后将被清理的方格数量。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
There is a cleaning robot on the square in an infinite two-dimensional grid.
The robot will be given a program represented as a string consisting of four kind of characters L
, R
, U
, D
.
It will read the characters in the program from left to right and perform the following action for each character read.
- Let be the square where the robot is currently on.
- Make the following move according to the character read:
- if
L
is read: go to . - if
R
is read: go to . - if
U
is read: go to . - if
D
is read: go to .
- if
You are given a string consisting of L
, R
, U
, D
. The program that will be executed by the robot is the concatenation of copies of .
Squares visited by the robot at least once, including the initial position , will be cleaned.
Print the number of squares that will be cleaned at the end of the execution of the program.
Constraints
- is a string of length between and (inclusive) consisting of
L
,R
,U
,D
.
Input
Input is given from Standard Input in the following format:
Output
Print the number of squares that will be cleaned at the end of the execution of the program.
Sample Input 1
RDRUL
2
Sample Output 1
7
The robot will execute the program RDRULRDRUL
. It will start on and travel as follows:
$(0, 0) \rightarrow (1, 0) \rightarrow (1, 1) \rightarrow (2, 1) \rightarrow (2, 0) \rightarrow (1, 0) \rightarrow (2, 0) \rightarrow (2, 1) \rightarrow (3, 1) \rightarrow (3, 0) \rightarrow (2, 0)$.
In the end, seven squares will get cleaned: $(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)$.
Sample Input 2
LR
1000000000000
Sample Output 2
2
Sample Input 3
UUURRDDDRRRUUUURDLLUURRRDDDDDDLLLLLLU
31415926535
Sample Output 3
219911485785
update @ 2024/3/10 09:42:16