#abc216c. C - Many Balls
C - Many Balls
Score : points
问题描述
我们有一个空盒子。
高桥可以任意顺序、任意次数地施放以下两种法术。
- 法术 : 向盒子里放入一个新球。
- 法术 : 将盒子里球的数量翻倍。
请告诉我们一种方法,使用 最多 次 法术施放,使得盒子里恰好有 个球。
在给定的约束条件下,可以证明总是存在这样的方法。
除了法术之外,没有其他方式改变盒子里球的数量。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
We have an empty box.
Takahashi can cast the following two spells any number of times in any order.
- Spell : puts one new ball into the box.
- Spell : doubles the number of balls in the box.
Tell us a way to have exactly balls in the box with at most casts of spells.
It can be proved that there always exists such a way under the Constraints given.
There is no way other than spells to alter the number of balls in the box.
Constraints
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print a string consisting of A
and B
. The -th character of should represent the spell for the -th cast.
must have at most characters.
Sample Input 1
5
Sample Output 1
AABA
This changes the number of balls as follows: $0 \xrightarrow{A} 1\xrightarrow{A} 2 \xrightarrow{B}4\xrightarrow{A} 5$.
There are also other acceptable outputs, such as AAAAA
.
Sample Input 2
14
Sample Output 2
BBABBAAAB
This changes the number of balls as follows: $0 \xrightarrow{B} 0 \xrightarrow{B} 0 \xrightarrow{A}1 \xrightarrow{B} 2 \xrightarrow{B} 4 \xrightarrow{A}5 \xrightarrow{A}6 \xrightarrow{A} 7 \xrightarrow{B}14$.
It is not required to minimize the length of .
update @ 2024/3/10 09:34:46