#abc207f. F - Tree Patrolling
F - Tree Patrolling
Score : points
问题描述
你拥有一棵包含 个顶点的树,顶点编号为 到 。第 条边连接顶点 和顶点 。
你需要选择一些顶点(可能一个都不选)并在其中放置高桥守卫来保护这棵树。放置在顶点 的高桥守卫将守护顶点 本身以及通过边直接与 相连的所有顶点。
共有 种选择顶点放置高桥守卫的方式。其中有多少种方式能够使得恰好有 个顶点被一个或多个高桥守卫守护?
请计算这个计数,并对每种情况下的 ,将结果模 后输出。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
You have a tree with vertices, numbered through . The -th edge connects Vertex and Vertex .
You will choose some vertices (possibly none) and place a takahashi in each of them to guard the tree. A takahashi placed at Vertex will guard itself and the vertices directly connected to by an edge.
There are ways to choose vertices for placing takahashi. In how many of them will there be exactly vertices guarded by one or more takahashi?
Find this count and print it modulo for each .
Constraints
- The given graph is a tree.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print lines. The -th line should contain the answer for .
Sample Input 1
3
1 3
1 2
Sample Output 1
1
0
2
5
There are eight ways to choose vertices for placing takahashi, as follows:
- Place a takahashi at no vertices, guarding no vertices.
- Place a takahashi at Vertex , guarding all vertices.
- Place a takahashi at Vertex , guarding Vertices and .
- Place a takahashi at Vertex , guarding Vertices and .
- Place a takahashi at Vertices and , guarding all vertices.
- Place a takahashi at Vertices and , guarding all vertices.
- Place a takahashi at Vertices and , guarding all vertices.
- Place a takahashi at all vertices, guarding all vertices.
Sample Input 2
5
1 3
4 5
1 5
2 3
Sample Output 2
1
0
2
5
7
17
Sample Input 3
10
6 10
1 8
2 7
5 6
3 8
3 4
7 10
4 9
2 8
Sample Output 3
1
0
3
8
15
32
68
110
196
266
325
update @ 2024/3/10 09:21:17