#abc187f. F - Close Group
F - Close Group
问题陈述
给定一个简单的无向图,包含个顶点和条边。顶点编号为,第条边连接顶点和。
在移除零条或多条边后,找到图中可能的最小连通分量数量,以满足以下条件:
条件:
对于每一对顶点,满足,如果顶点和属于同一个连通分量,那么存在一条直接连接顶点和的边。
以上为大语言模型 kimi 翻译,仅供参考。
Problem Statement
Given is a simple undirected graph with vertices and edges. The vertices are numbered , and the -th edge connects Vertices and .
Find the minimum possible number of connected components in the graph after removing zero or more edges so that the following condition will be satisfied:
Condition:
For every pair of vertices such that , if Vertices and belong to the same connected component, there is an edge that directly connects Vertices and .
Constraints
- All values in input are integers.
- for .
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
Sample Input 1
3 2
1 2
1 3
Sample Output 1
2
Without removing edges, the pair violates the condition. Removing one of the edges disconnects Vertices and , satisfying the condition.
Sample Input 2
4 6
1 2
1 3
1 4
2 3
2 4
3 4
Sample Output 2
1
Sample Input 3
10 11
9 10
2 10
8 9
3 4
5 8
1 8
5 6
2 5
3 6
6 9
1 9
Sample Output 3
5
Sample Input 4
18 0
Sample Output 4
18