#YBTJ1205. 汉诺塔问题

汉诺塔问题

【题目描述】

约 19 世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由 64 个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。

这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以 64 个盘的移动次数是:18,446,744,073,709,551,61518,446,744,073,709,551,615

这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小 N 值时的汉诺塔,但很难用计算机解决 64 层的汉诺塔。

假定圆盘从小到大编号为 1,2,...1, 2, ...

【输入】

输入为一个整数 nn(n<20 n\lt 20)后面跟三个单字符字符串。

整数 nn 为盘子的数目,后三个字符表示三个杆子的编号。

【输出】

输出每一步移动盘子的记录。一次移动一行。

每次移动的记录为例如 a->3->b 的形式,即把编号为 3 的盘子从 aa 杆移至 bb 杆。

【输入样例】

2 a b c

【输出样例】

a->1->c
a->2->b
c->1->b

【来源】

一本通在线评测