#CF600E. Lomsat gelral

Lomsat gelral

Lomsat gelral

难度:省选/NOI-\colorbox{purple}{\color{white}省选/NOI-}

题面翻译

  • 有一棵 nn 个结点的以 11 号结点为根的有根树
  • 每个结点都有一个颜色,颜色是以编号表示的, ii 号结点的颜色编号为 cic_i
  • 如果一种颜色在以 xx 为根的子树内出现次数最多,称其在以 xx 为根的子树中占主导地位。显然,同一子树中可能有多种颜色占主导地位。
  • 你的任务是对于每一个 i[1,n]i\in[1,n],求出以 ii 为根的子树中,占主导地位的颜色的编号和。
  • n105,cinn\le 10^5,c_i\le n

题目描述

You are given a rooted tree with root in vertex 1 1 . Each vertex is coloured in some colour.

Let's call colour c c dominating in the subtree of vertex v v if there are no other colours that appear in the subtree of vertex v v more times than colour c c . So it's possible that two or more colours will be dominating in the subtree of some vertex.

The subtree of vertex v v is the vertex v v and all other vertices that contains vertex v v in each path to the root.

For each vertex v v find the sum of all dominating colours in the subtree of vertex v v .

输入格式

The first line contains integer n n ( 1<=n<=105 1<=n<=10^{5} ) — the number of vertices in the tree.

The second line contains n n integers ci c_{i} ( 1<=ci<=n 1<=c_{i}<=n ), ci c_{i} — the colour of the i i -th vertex.

Each of the next n1 n-1 lines contains two integers xj,yj x_{j},y_{j} ( 1<=xj,yj<=n 1<=x_{j},y_{j}<=n ) — the edge of the tree. The first vertex is the root of the tree.

输出格式

Print n n integers — the sums of dominating colours for each vertex.

样例 #1

样例输入 #1

4
1 2 3 4
1 2
2 3
2 4

样例输出 #1

10 9 3 4

样例 #2

样例输入 #2

15
1 2 3 1 2 3 3 1 1 3 2 2 1 2 3
1 2
1 3
1 4
1 14
1 15
2 5
2 6
2 7
3 8
3 9
3 10
4 11
4 12
4 13

样例输出 #2

6 5 4 3 2 3 3 1 1 3 2 2 1 2 3