- chjshen 的博客
数据结构-特殊树之堆
- 2023-5-31 22:41:41 @
堆是一棵树,其每个节点都有一个键值,且每个节点的键值都大于等于/小于等于其父亲的键值。
每个节点的键值都大于等于其父亲键值的堆叫做小根堆,否则叫做大根堆。STL 中的 priority_queue
其实就是一个大根堆。
(小根)堆主要支持的操作有:插入一个数、查询最小值、删除最小值、合并两个堆、减小一个元素的值。
一些功能强大的堆(可并堆)还能(高效地)支持 merge 等操作。
一些功能更强大的堆还支持可持久化,也就是对任意历史版本进行查询或者操作,产生新的版本。
堆的分类
操作\数据结构 | 配对堆 | 二叉堆 | 左偏树 | 二项堆 | 斐波那契堆 |
---|---|---|---|---|---|
插入(insert) | |||||
查询最小值(find-min) | |||||
删除最小值(delete-min) | |||||
合并 (merge) | |||||
减小一个元素的值 (decrease-key) | (下界 ,上界 ) | ||||
是否支持可持久化 |
习惯上,不加限定提到“堆”时往往都指二叉堆。这里也只讲二叉堆。
结构
从二叉堆的结构说起,它是一棵二叉树,并且是完全二叉树,每个结点中存有一个元素(或者说,有个权值)。
堆性质:父亲的权值不小于儿子的权值(大根堆)。同样的,我们可以定义小根堆。本文以大根堆为例。
由堆性质,树根存的是最大值(getmax 操作就解决了)。
过程
插入操作
插入操作是指向二叉堆中插入一个元素,要保证插入后也是一棵完全二叉树。
最简单的方法就是,最下一层最右边的叶子之后插入。
如果最下一层已满,就新增一层。
插入之后可能会不满足堆性质?
向上调整:如果这个结点的权值大于它父亲的权值,就交换,重复此过程直到不满足或者到根。
可以证明,插入之后向上调整后,没有其他结点会不满足堆性质。
向上调整的时间复杂度是 的。
删除操作
删除操作指删除堆中最大的元素,即删除根结点。
但是如果直接删除,则变成了两个堆,难以处理。
所以不妨考虑插入操作的逆过程,设法将根结点移到最后一个结点,然后直接删掉。
然而实际上不好做,我们通常采用的方法是,把根结点和最后一个结点直接交换。
于是直接删掉(在最后一个结点处的)根结点,但是新的根结点可能不满足堆性质……
向下调整:在该结点的儿子中,找一个最大的,与该结点交换,重复此过程直到底层。
可以证明,删除并向下调整后,没有其他结点不满足堆性质。
时间复杂度 。
减小某个点的权值
很显然,直接修改后,向上调整一次即可,时间复杂度为 。
实现
我们发现,上面介绍的几种操作主要依赖于两个核心:向上调整和向下调整。
考虑使用一个序列 来表示堆。 的两个儿子分别是 和 , 是根结点:
参考代码:
void up(int x) {
while (x > 1 && h[x] > h[x / 2]) {
swap(h[x], h[x / 2]);
x /= 2;
}
}
void down(int x) {
while (x * 2 <= n) {
t = x * 2;
if (t + 1 <= n && h[t + 1] > h[t]) t++;
if (h[t] <= h[x]) break;
std::swap(h[x], h[t]);
x = t;
}
}
建堆
考虑这么一个问题,从一个空的堆开始,插入 个元素,不在乎顺序。
直接一个一个插入需要 的时间,有没有更好的方法?
方法一:使用 decreasekey(即,向上调整)
从根开始,按 BFS 序进行。
void build_heap_1() {
for (i = 1; i <= n; i++) up(i);
}
为啥这么做:对于第 层的结点,向上调整的复杂度为 而不是 。
总复杂度:$\log 1 + \log 2 + \cdots + \log n = \Theta(n \log n)$。
(在「基于比较的排序」中证明过)
方法二:使用向下调整
这时换一种思路,从叶子开始,逐个向下调整
void build_heap_2() {
for (i = n; i >= 1; i--) down(i);
}
换一种理解方法,每次「合并」两个已经调整好的堆,这说明了正确性。
注意到向下调整的复杂度,为 ,另外注意到叶节点无需调整,因此可从序列约 的位置开始调整,可减少部分常数但不影响复杂度。
???+note "证明"
$$\begin{aligned} \text{总复杂度} & = n \log n - \log 1 - \log 2 - \cdots - \log n \\ & \leq n \log n - 0 \times 2^0 - 1 \times 2^1 -\cdots - (\log n - 1) \times \frac{n}{2} \\ & = n \log n - (n-1) - (n-2) - (n-4) - \cdots - (n-\frac{n}{2}) \\ & = n \log n - n \log n + 1 + 2 + 4 + \cdots + \frac{n}{2} \\ & = n - 1 \\ & = O(n) \end{aligned} $$之所以能 建堆,是因为堆性质很弱,二叉堆并不是唯一的。
要是像排序那样的强条件就难说了。
应用
对顶堆
SP16254 RMID2 - Running Median Again" 维护一个序列,支持两种操作:
1. 向序列中插入一个元素
2. 输出并删除当前序列的中位数(若序列长度为偶数,则输出较小的中位数)
这个问题可以被进一步抽象成:动态维护一个序列上第 大的数, 值可能会发生变化。
对于此类问题,我们可以使用 对顶堆 这一技巧予以解决(可以避免写权值线段树或 BST 带来的繁琐)。
对顶堆由一个大根堆与一个小根堆组成,小根堆维护大值即前 大的值(包含第 k 个),大根堆维护小值即比第 大数小的其他数。
这两个堆构成的数据结构支持以下操作:
- 维护:当小根堆的大小小于 时,不断将大根堆堆顶元素取出并插入小根堆,直到小根堆的大小等于 ;当小根堆的大小大于 时,不断将小根堆堆顶元素取出并插入大根堆,直到小根堆的大小等于 ;
- 插入元素:若插入的元素大于等于小根堆堆顶元素,则将其插入小根堆,否则将其插入大根堆,然后维护对顶堆;
- 查询第 大元素:小根堆堆顶元素即为所求;
- 删除第 大元素:删除小根堆堆顶元素,然后维护对顶堆;
- 值 :根据新的 值直接维护对顶堆。
显然,查询第 大元素的时间复杂度是 的。由于插入、删除或调整 值后,小根堆的大小与期望的 值最多相差 ,故每次维护最多只需对大根堆与小根堆中的元素进行一次调整,因此,这些操作的时间复杂度都是 的。
- 双倍经验:SP15376 RMID - Running Median
- 典型习题:P1801 黑匣子