#abc343e. E - 7x7x7
E - 7x7x7
Score: points
问题陈述
在一个坐标空间中,我们希望放置三个边长为 的立方体,使得恰好被一个、两个、三个立方体包含的区域的体积分别为 、 和 。
对于三个整数 、、,令 表示由条件 且 且 确定的立方体区域。
确定是否存在九个整数 满足所有以下条件,并在存在时找出一组这样的数。
- $|a_1|, |b_1|, |c_1|, |a_2|, |b_2|, |c_2|, |a_3|, |b_3|, |c_3| \leq 100$
- 设 。
- 恰好被 中的一个立方体包含的区域的体积是 。
- 恰好被 中的两个立方体包含的区域的体积是 。
- 被 全部包含的区域的体积是 。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
In a coordinate space, we want to place three cubes with a side length of so that the volumes of the regions contained in exactly one, two, three cube(s) are , , , respectively.
For three integers , , , let denote the cubic region represented by $(a\leq x\leq a+7) \land (b\leq y\leq b+7) \land (c\leq z\leq c+7)$.
Determine whether there are nine integers that satisfy all of the following conditions, and find one such tuple if it exists.
- $|a_1|, |b_1|, |c_1|, |a_2|, |b_2|, |c_2|, |a_3|, |b_3|, |c_3| \leq 100$
- Let .
- The volume of the region contained in exactly one of is .
- The volume of the region contained in exactly two of is .
- The volume of the region contained in all of is .
Constraints
- All input values are integers.
Input
The input is given from Standard Input in the following format:
Output
If no nine integers satisfy all of the conditions in the problem statement, print No. Otherwise, print such integers in the following format. If multiple solutions exist, you may print any of them.
Yes
Sample Input 1
840 84 7
Sample Output 1
Yes
0 0 0 0 6 0 6 0 0
Consider the case $(a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3) = (0, 0, 0, 0, 6, 0, 6, 0, 0)$.

The figure represents the positional relationship of , , and , corresponding to the orange, cyan, and green cubes, respectively.
Here,
- All of $|a_1|, |b_1|, |c_1|, |a_2|, |b_2|, |c_2|, |a_3|, |b_3|, |c_3|$ are not greater than .
- The region contained in all of is $(6\leq x\leq 7)\land (6\leq y\leq 7) \land (0\leq z\leq 7)$, with a volume of .
- The region contained in exactly two of is $((0\leq x < 6)\land (6\leq y\leq 7) \land (0\leq z\leq 7))\lor((6\leq x\leq 7)\land (0\leq y < 6) \land (0\leq z\leq 7))$, with a volume of .
- The region contained in exactly one of has a volume of .
Thus, all conditions are satisfied.
$(a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3) = (-10, 0, 0, -10, 0, 6, -10, 6, 1)$ also satisfies all conditions and would be a valid output.
Sample Input 2
343 34 3
Sample Output 2
No
No nine integers satisfy all of the conditions.
update @ 2024/3/10 01:16:45