#abc294h. Ex - K-Coloring
Ex - K-Coloring
Score : points
## 问题描述
给定一个包含 $N$ 个顶点(编号从 $1$ 到 $N$)的简单无向图,以及 $M$ 条边(编号从 $1$ 到 $M$)。第 $i$ 条边连接顶点 $u_i$ 和顶点 $v_i$。
要求计算满足以下条件的不同整数标记方式的数量,结果对 $998244353$ 取模:
- 通过一条边相连的两个顶点上所写的数字始终不相同。
请注意,这里的“在每个顶点上写一个整数”范围是从 到 (包含 和 )。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
You are given a simple undirected graph with vertices numbered to and edges numbered to . Edge connects vertex and vertex .
Find the number, modulo , of ways to write an integer between and , inclusive, on each vertex of this graph to satisfy the following condition:
- two vertices connected by an edge always have different numbers written on them.
Constraints
- $0 \leq M \leq \min \left(30, \frac{N(N-1)}{2} \right)$
- The given graph is simple.
Input
The input is given from Standard Input in the following format:
Output
Print the number, modulo , of ways to write integers between and , inclusive, on the vertices to satisfy the condition.
Sample Input 1
4 3 2
1 2
2 4
2 3
Sample Output 1
2
Here are the two ways to satisfy the condition.
- Write on vertices , and write on vertex .
- Write on vertex , and write on vertex .
Sample Input 2
4 0 10
Sample Output 2
10000
All ways satisfy the condition.
Sample Input 3
5 10 5
3 5
1 3
1 2
1 4
3 4
2 5
4 5
1 5
2 3
2 4
Sample Output 3
120
Sample Input 4
5 6 294
1 2
2 4
1 3
2 3
4 5
3 5
Sample Output 4
838338733
Sample Input 5
7 12 1000000000
4 5
2 7
3 4
6 7
3 5
5 6
5 7
1 3
4 7
1 5
2 3
3 6
Sample Output 5
418104233
update @ 2024/3/10 12:15:20