#abc240g. G - Teleporting Takahashi
G - Teleporting Takahashi
Score : points
问题描述
Takahashi在无限三维网格中的点 。
他可以在方格之间瞬间移动。从点 ,他可以一次瞬移到 、、、、 或者 。(注意,他不能停留在原点 。)
求经过恰好 次瞬移后到达点 的路径数量。
换句话说,找出满足以下三个条件的长度为 的整数三元组序列的数量 $\big( (x_0, y_0, z_0), (x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_N, y_N, z_N)\big)$。
- 。
- 。
- 对于每个 ,满足 。
由于这个数字可能非常大,请输出模 后的结果。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
Takahashi is in the square in an infinite three-dimensional grid.
He can teleport between squares. From the square , he can move to , , , , , or in one teleport. (Note that he cannot stay in the square .)
Find the number of routes ending in the square after exactly teleports.
In other words, find the number of sequences of triples of integers $\big( (x_0, y_0, z_0), (x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_N, y_N, z_N)\big)$ that satisfy all three conditions below.
- .
- .
- for each .
Since the number can be enormous, print it modulo .
Constraints
- , , , and are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the number modulo .
Sample Input 1
3 2 0 -1
Sample Output 1
3
There are three routes ending in the square after exactly teleports:
- $(0, 0, 0) \rightarrow (1, 0, 0) \rightarrow (2, 0, 0) \rightarrow(2, 0, -1)$
- $(0, 0, 0) \rightarrow (1, 0, 0) \rightarrow (1, 0, -1) \rightarrow(2, 0, -1)$
- $(0, 0, 0) \rightarrow (0, 0, -1) \rightarrow (1, 0, -1) \rightarrow(2, 0, -1)$
Sample Input 2
1 0 0 0
Sample Output 2
0
Note that exactly teleports should be performed, and they do not allow him to stay in the same position.
Sample Input 3
314 15 92 65
Sample Output 3
106580952
Be sure to print the number modulo .
update @ 2024/3/10 10:22:15