#abc232e. E - Rook Path

E - Rook Path

Score : 500500 points

问题陈述

存在一个 H×WH \times W 的棋盘格,包含 HH 行(从上至下编号)和 WW 列(从左至右编号)。令 (i,j)(i, j) 表示第 ii 行从上数起、第 jj 列从左数起的方格。

棋盘上有一个初始位于 (x1,y1)(x_1, y_1) 的车(rook)。Takahashi 将执行以下操作 KK 次:

  • 将车移动到与当前占据方格在同一行或同一列的其他方格上。注意,必须移动到与当前方格不同的位置。

在经过 KK 次操作后,有多少种方法可以使车最终位于 (x2,y2)(x_2, y_2)?由于答案可能非常大,请计算结果对 998244353998244353 取模后的值。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

There is a H×WH \times W-square grid with HH horizontal rows and WW vertical columns. Let (i,j)(i, j) denote the square at the ii-th row from the top and jj-th column from the left.

The grid has a rook, initially on (x1,y1)(x_1, y_1). Takahashi will do the following operation KK times.

  • Move the rook to a square that shares the row or column with the square currently occupied by the rook. Here, it must move to a square different from the current one.

How many ways are there to do the KK operations so that the rook will be on (x2,y2)(x_2, y_2) in the end? Since the answer can be enormous, find it modulo 998244353998244353.

Constraints

  • 2H,W1092 \leq H, W \leq 10^9
  • 1K1061 \leq K \leq 10^6
  • 1x1,x2H1 \leq x_1, x_2 \leq H
  • 1y1,y2W1 \leq y_1, y_2 \leq W

Input

Input is given from Standard Input in the following format:

HH WW KK

x1x_1 y1y_1 x2x_2 y2y_2

Output

Print the number of ways to do the KK operations so that the rook will be on (x2,y2)(x_2, y_2) in the end, modulo 998244353998244353.

Sample Input 1

2 2 2
1 2 2 1

Sample Output 1

2

We have the following two ways.

  • First, move the rook from (1,2)(1, 2) to (1,1)(1, 1). Second, move it from (1,1)(1, 1) to (2,1)(2, 1).
  • First, move the rook from (1,2)(1, 2) to (2,2)(2, 2). Second, move it from (2,2)(2, 2) to (2,1)(2, 1).

Sample Input 2

1000000000 1000000000 1000000
1000000000 1000000000 1000000000 1000000000

Sample Output 2

24922282

Be sure to find the count modulo 998244353998244353.

Sample Input 3

3 3 3
1 3 3 3

Sample Output 3

9

update @ 2024/3/10 10:07:09

}