#abc208f. F - Cumulative Sum

F - Cumulative Sum

Score : 600600 points

问题描述

对于非负整数 nnmm,我们使用正整数 KK 定义函数 f(n,m)f(n, m) 如下:

$$f(n, m) = \begin{cases} 0 & (n = 0) \\ n^K & (n > 0, m = 0) \\ f(n-1, m) + f(n, m-1) & (n > 0, m > 0) \end{cases} $$

给定 NNMMKK,求 f(N,M)f(N, M) 除以 (109+7)(10 ^ 9 + 7) 的余数。

以上为通义千问 qwen-max 翻译,仅供参考。

Problem Statement

For non-negative integers nn and mm, let us define the function f(n,m)f(n, m) as follows, using a positive integer KK.

$\displaystyle f(n, m) = \begin{cases} 0 & (n = 0) \\ n^K & (n \gt 0, m = 0) \\ f(n-1, m) + f(n, m-1) & (n \gt 0, m \gt 0) \end{cases}$

Given NN, MM, and KK, find f(N,M)f(N, M) modulo (109+7)(10 ^ 9 + 7).

Constraints

  • 0N10180 \leq N \leq 10^{18}
  • 0M300 \leq M \leq 30
  • 1K2.5×1061 \leq K \leq 2.5 \times 10^6
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM KK

Output

Print f(N,M)f(N, M) modulo (109+7)(10 ^ 9 + 7).

Sample Input 1

3 4 2

Sample Output 1

35

When K=2K = 2, the values f(n,m)f(n, m) for n3,m4n \leq 3, m \leq 4 are as follows.

$m = 0$$m = 1$$m = 2$$m = 3$$m = 4$
$n = 0$$0$$0$$0$$0$$0$
$n = 1$$1$$1$$1$$1$$1$
$n = 2$$4$$5$$6$$7$$8$
$n = 3$$9$$14$$20$$27$$35$
## Sample Input 2
0 1 2

Sample Output 2

0

Sample Input 3

1000000000000000000 30 123456

Sample Output 3

297085514

update @ 2024/3/10 09:22:16

}