#abc202f. F - Integer Convex Hull
F - Integer Convex Hull
Score : points
问题描述
我们有 个点 在一个平面上,其中点 的坐标为 。已知没有三个点共线。
对于 的子集 (至少包含三个元素),我们定义 凸包 如下:
- 凸包是指具有最小面积的凸多边形,使得 中的所有点都在该多边形内部或边界上。
求满足其凸包面积为整数的子集 的个数,结果对 取模。
以上为通义千问 qwen-max 翻译,仅供参考。
Problem Statement
We have points on a plane. The coordinates of is . We know that no three points lie on the same line.
For a subset of with at least three elements, let us define the convex hull of as follows:
- The convex hull is the convex polygon with the minimum area such that every point of is within or on the circumference of that polygon.
Find the number, modulo , of subsets such that the area of the convex hull is an integer.
Constraints
- No three points lie on the same line.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer. Note that you are asked to find the count modulo .
Sample Input 1
4
0 0
1 2
0 1
1 0
Sample Output 1
2
and satisfy the condition.
Sample Input 2
23
-5255 7890
5823 7526
5485 -113
7302 5708
9149 2722
4904 -3918
8566 -3267
-3759 2474
-7286 -1043
-1230 1780
3377 -7044
-2596 -6003
5813 -9452
-9889 -7423
2377 1811
5351 4551
-1354 -9611
4244 1958
8864 -9889
507 -8923
6948 -5016
-6139 2769
4103 9241
Sample Output 2
4060436
update @ 2024/3/10 09:15:01